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1. INTRODUCTION

Let C be a simple closed curve in the complex z-plane, z = x + iy, and
let Int C denote the interior region of C. A function U from Int C to the
reals is said to be harmonic on Int C if it is continuous on Int C, together
with its first and second partial derivatives, and satisfies the Laplace equation

The classical Dirichlet problem for C and lnt C is this: Given a continuous
function u from C to the reals, find a function U, harmonic on Int C, such
that at each point Zo of C, limz_,zo U(z) = u(zo), Z E Int C.

This paper is concerned with a method for approximating the solution U
on Int C in which a finite set ZN of 2N + 1 distinct points is chosen on C
and harmonic polynomials Hn(ZN ; u; z) of respective degrees at most 11,

n = 1,2,... , N - 1, are determined by best approximation to the boundary
values in a least-squares sense on ZN . The problem is to prove the existence
of, and characterize sequences <ZN>~~l such that the corresponding double
sequences <Hn(ZN ; u; z» converge to U on Int C.

A limiting case is that in which the least-squares approximation is perfect
and the polynomial Hn(ZN ; u; z) is determined by direct interpolation to u
at the nodes ZN' In general it is necessary to take n = N in that case. The
problem of the convergence behavior of harmonic interpolation polynomials
as the number of nodes increases was first proposed by Walsh [17]. It was
solved by him for the case in which C is an ellipse [20], and it has recentiy
been studied in some detail by the author [1, 3-5] for more general curves C.

There is empirical evidence that the behavior of the approximating
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harmonic polynomials which are tied to the boundary values at nodes ZN
on C is improved when the polynomials are "overdetermined" in the sense
that more nodes are used for a given degree n than would be required for
simple interpolation. By improvement in behavior we mean chiefly that (1)
for a given amount of computation, a closer approximation to the solution U
is obtained when the nodes are placed on C in a manner which has proved
successful for obtaining convergence in the direct interpolation case; and
(2) convergence is less sensitive to the spacing of the nodes than it is with
simple interpolation. Because of limitations of time the author has not
attempted to supplement this paper with new numerical experiments to
confirm (1).

However, support to (2) is given in Section 8 at the end of the paper,
where a striking special case is presented in which C is the unit circle and the
nodes are the roots of unity with a simple perturbation. For each continuous
u, the sequence of overdetermined polynomials converges everywhere to
the desired value on the open unit disk, but the sequence of direct interpola­
tion polynomials is unbounded at an infinite set of points on the disk for
an infinite set of continuous boundary-value functions u.

The existence of, and normal equations for calculating, the overdetermined
least-squares polynomials Hn(ZN; u; z) are discussed in Section 2. In
Section 3, the basic convergence theorem is announced (Theorem 3.1) and
the problem of finding successful sequences <ZN> on C is referred to the
unit circle by conformal mapping. The Faber polynomials are thereafter
taken to be the basis for the representation of Hn(ZN ; u; z), and so play
a central role in the convergence proof. Sections 4 and 5 are concerned with
preliminaries (such as analytical requirements on the spacing of the points)
for the convergence proof, which appears in Section 6. In Section 7, the
behavior of H,,(ZN ; u; z) is studied under the condition that n remains
fixed, and N -->- 00. Section 8 contains the special case described above.

2. EXISTENCE AND STRUCTURE OF

OVERDETERMlNED HARMONIC INTERPOLATION POLYNOMIALS

Let ZN = {zo , Zl , ••. , Z2N} be a set of 2N + 1 (distinct) points on C. (It
simplifies formulas slightly to use an odd number of nodes.) The criterion
for fitting a harmonic polynomial H(u; z) to u(z) will be that

2."1

I [H(u; Zk) - U(Zk)]2
1.;=0

shall be a minimum. We examine this in terms of standard linear approxima-
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tion theory. (See [7, Chap. 7].) Consider the linear space 2'c of functions u
from C to the reals, with restriction to ZN , and with real scalars. Equip this
space with an inner product (UI , uz) = 'L: U1(ZIJ UiZIJ The corresponding
norm

is such that the resulting normed linear space is strictly convex [7, p. 141].
Then if rtCz), ... , v.",(z) are any 111 linearly independent elements of 2'c (this
means that the In vectors Vj = [v;(zo), L'j(Zl),oo., Vj(Z2N)], j = 1'00" m, are
linearly independent), for each U EO.Pc there exists a unique real linear
combination 'L:l Cjv;(z) which minimizes 11/ - u Ii, where / runs through
all rea! linear combinations of VI' V2 , ... , v'" [7, pp. 137 fi].

A harmonic polynomial of degree at most n can be defined as the real
part of a complex polynomial of degree n, and so is a real linear combination
of the real-valued functions

1, z + z,oo., z" + zn, i(z - z) ... i(Z" - i"), (2.1)

where the bar denotes complex conjugate. Let, 1, Pl(Z),oo" p",(z) be an
arbitrary sequence of complex polynomials in which Pj(z) is of degree
exactly j.j = 1'00" n. With go, a1 , ... , an, hI'"'' bn all real, the function

" "H(z) = go + L aj[p;(z) + PJ(z)] + L b)[pj(z) - p;(z)]
;=1 j=l

n

= go + L [gjp;(z) + gjpiz)],
jo"1

(2.2)

(i is the imaginary unit) is also a real linear combination of the "circular
harmonics" (2.1). and so is a harmonic polynomial. In fact, since zj can be
expressed (uniquely) as a complex linear combination of Po(z) == 1,
PI(Z), ... , pj(z), (j an integer, 0 ~ j ~ n), any given harmonic polynomial of
degree n has a unique representation of the type (2.2). The functions (2.1),
restricted to ZN , are linearly independent if and only if the functions

1, PI(Z) + h(z),oo., p"(z),, + Pn(z), i(Pl(Z) - Pl(Z), ... , i(Pn(z) - p,,(z),

restricted to ZN, are linearly independent, and a necessary and sufficient
condition for this linear independence is that the functions

1, Pl(Z)"." Pn(z), h(Z), ... , p,,(z),

restricted to ZN, be linearly independent, using complex scalars.
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Now suppose that the harmonics (2.1), restricted to ZN, are indeed linearly
independent. Let U E.,Pc be given. Then according to the first paragraph in
this section, there exists a unique real linear combination of the functions
(2.1), say H(Ol(ll; z), which minimizes II H - llil among all linear combinations
of the functions (2.1). Also there exists a unique linear combination of the
type (2.2) of the functions 1, PI ,... , Pn, P1"'" Pn, say H(1)(ll; z), which
minimizes II H - U II among all such linear combinations. But H(1)(u; z) is,
in fact, a real linear combination of the functions (2.1), so by the uniqueness
it must be merely a rearrangement of H(O)(ll; z), and H(O)(u; z) = H(l)(U; z)

for all z.
In [3] it is shown that for each N, N = 1,2,... , there exists at least one

set of points Z,v on the curve C such that the matrix MN whose (k + 1)st
row is 1, Zk ,... , ZkN

, Zk ,..., Zk'V, k = 0, 1,... , 2N, is nonsingular. Thus, its
column vectors are linearly independent, and hence, if 11 < N, the functions
1, z, ... , zn, Z, ... , zn, restricted to ZN, are, too, linearly independent. Thus,
the assumption prerequisite to the existence of a unique harmonic polynomial
of degree 11 < N of best approximation in the above norm" . Ii is not vacuous,
at least for some ZN' Henceforth (as in the Introduction) a harmonic
polynomial of degree at most 11 of best approximation to u in the norm II • II
will be denoted by Hn(ZN ; u; z).

Now let ZN be such that the harmonics (2.1), restricted to ZN , are linearly
independent, so that HnCZN ; u; z) exists and is unique. In terms of linear
approximation in the real normed linear space .,Pc , if H n is based, as in (2.2),
on the polynomials 1,Pl ,... ,Pn , we should regard Hn as the best linear
approximation to u on Zj\; with the elements 1, PI + PI , P2 + P2 ,... , Pn + Pn ,
i(Pl - PI), .. ·, i(Pn - Pn). The normal equations [7, p. 176] for determining
the coefficients go , Gj , bj in (2.2) are

2N
I [Hn(ZN; u; Zk) - U(Zk)] = 0,
k~O

2N
I [plZk) + plZk)][HnCZN ; u; Zk) - U(Zk)] = 0,
,,~O

2N
L i[P;(Zk) - Pi(z,,)][Hn(ZN ; It; z/.) - ll(ZI.')] = 0,
"=0

j = 1,2,... , n.

It is convenient, for theoretical purposes, to use an equivalent complex
form for these equations, which is obtained by using the third member of
(2.2) and by obvious elementary transformations:
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J = 1,2, ... ,11;

J = 1,2,.... , n.

Let Ps " be the (2N + 1) X (211 + 1) matrix

[
1, Pl(Zk),"" ~11(z/J, PI(ZI~)'''' p,,(z")l

k -- 0, 1,... ,2N J

Let g" 0=0= (go, gl ,... , g" ,gl ,... , g") and UN = (u(zo), lI(Zl)'"'' U(Z2N))' The
normal Eqs. (2.3) in matrix form become

(2.4)

where the asterisk means conjugate transpose. The matrix P<~nPNrz is related
by elementary transformations to the Gram matrix (7, p. 177] of the elemen.ts
1, PI + PI, .. ·, i(PI - PI),,,,, and so must be nonsingular under the assump­
tion that these harmonics are linearly independent on ZN' Conversely, if
the matrix P!J.nPNn is nonsingular, then it is easy to see by elementary linear
algebra that the columns of PNrz are linearly independent, and H ll(Z,y ; u; z)
exists uniquely, with coefficients gn given by (2.4).

3. CONVERGENCE THEORY;

FORMULATION IN TERMS OF FABER POLYNOMIALS

Given a double sequence of complex numbers (a;.... ,n ,11 < N>':r.n~l , we
shall say that limn~oo aN." = a, uniformly in N > 11, if, given any E > 0,
there exists an 11, > 1 such that I aN,,, - a I < E for all n ~ n, and an N > n.

If aN," = aN.,,(z) is a value of a function with domain :!t, the statement
limn-o>oo aN,n(z) = a(z), uniformly in N > n and almost uniformly on fJ)

means that given any E > °and any compact subset 81Jo of fJJ, there exists
an n. > 0 (which may depend on fJJo) such that I aN,nCz) - a(z)I < E for all
1'1 :;? 11, , all N > n, and all z on f!lJo . OUf basic convergence theorem is
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THEOREM 3.1. Let C be an analytic simple closed curve, and let u(z) be
continuous on C. There exist sequences S = <ZN)r: == <{ZNO , ZN1 ,... , ZN,2N})r:
ofsubsets of C such that:

(1) For some positive integer ns there is a uniquely determined least­
squares polynomial H(ZN; u; z) with coefficients given by (2.4), for each
pair N, n with N > n ~ ns .

(2) Limn->oo Ie I Hn(ZN ; u; z) - u(z)12 I dz I = 0, uniformly in N> n.

(3) Limn->oo Hn(ZN ; u; z) = U(z), uniformly in N > n and almost
uniformly on Int C, the interior region of C, where U(z) is the solution of the
Dirichlet problem for u and Int C.

The statement (1) is equivalent to saying that for N > n ~ ns , the matrix
P't"PNn is nonsingular.

To characterize successful sequences S we shall follow a tradition in
complex polynomial interpolation theory in which the problem of proper
spacing on C is referred, by conformal mapping, to the unit circle. (See
[4,5,8].) Given any simple closed curve C, there exists a function

z = ep(w) = d (w + do + d1 + d?2 + ...),w w_ d>O, (3.1)

which is univalent and analytic for I wi> 1, and which maps {w: Iwi> l}
conformally onto Ext C (the exterior region of C). The number d is the
transfinite diameter (capacity) of C. The function 4> has a continuous exten­
sion onto r = {w: I wi = I} which gives a topological mapping ofr onto C.
Given any set {ZNO' ZN1 ,... , ZN.2N} of 2N + I (distinct) points on C, we
propose to characterize its distribution on C by that of the image points
WNk = 4>-l(zm.), k = 0, 1,... , 2N on the unit circle in the w-plane.

The discussion in Section 2 shows that in the presence of uniqueness of
the least-squares solution, it makes no difference how we choose the poly­
nomials Pi in the representation (2.2) insofar as the values of H(ZN ; u; z)
for a given ZN and u are concerned, provided that the polynomials Pi are of
respective degrees exactly j. For computational purposes, one might well
wish to choose p;(z) = Z1. But since the convergence program here involves
referral to the unit circle via the mapping (3.1), it is natural to select a set
of base polynomials Pi which assume a reasonably simple form as functions
of w after this transformation. Such a property is possessed by the Faber
polynomials associated with C. (See [6], where an extensive bibliography
is given). We develop briefly those formal properties of these polynomials
which are essential for present purposes.
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Let C be an arbitrary simple closed curve. For z exterior to a sufficiently
large circle, the inverse transformation of (3.1) has a Laurent expansion

rp-l(Z) =: ~ + Co + L Clerk,
h~l

The jth Faber polynomial p;(z), j = 1,2,.,., belonging to C (or to rp) is the
principal part at infinity of the Laurent expansion of [<{>-l(Z)]i. Clearly the
coefficient of zi in Pi is d-i of= O. These polynomials can be calculated from
the recursion formulas

P1(Z) = (z/d) - do,

j = 1,2,....

(In using this, it is to be understood that Po = P-J = P-2 = '" = 0.) It is easy
to show by the calculus of residues [6] that after the transformation z = ¢(w),
P; assumes the form

QO

Pi( rp(w» = lri + L Ot;kW-k,

k~l

j = 1, 2,..., I wi> 1. (3.2)

Each of the series here converges almost everywhere on i HI I = 1 in the
Lebesgue sense, and if C is rectifiable (as in Theorem 3.1) the series converges
absolutely for I 11' I = 1. (See [6, Theorems 4.3 and 4.4]). The numbersy.n,
are called the Faber coefficients for C (or rp).

Now let ZN = {Z.'Vo " .. , ZN,2N} be any set of 2N + 1 (distinct) points on
an arbitrary simple closed curve C, and let ~V'V = {WNO , H'NI , ... , 11'N,2N} be
the image set on Iw I = I under the transformation ¢-1, determined
by (3.1).

After the substitution z = rp(w), the matrix PNn of Section 2 becomes

k = 0, 1,2" .. , 2N



156 CURTISS

Let matrices An, UNn , and ENn be defined as follows:

r

In+!

An =
0 (Xn (X21 (X"l

0 (X12 0:22 U::: n2

0 <Xl" (X2n U'nn

0 0 0 .,
(Xn (X21 (X"l

(X"l ~2n <X,,"

In

where 1M is the identity matrix of order M;

U [
1, WNh: , W~h: ,... , W~h: , ~Nk ,... , W~h:],

."I" = ,k - 0, 1,2,... , _N

Then PNn = UN"A" + EN" , and the normal equations (2.4) become

We now introduce a vector whose components are Fourier-Lagrange
coefficients for u[c/>(w)] relative to the set WN = {WNk' h = 0,... , 2N}. (The
terminology is that of [21, Chap. 10].) For any integer 17, let INk =
(2N+ 1)-1 L:~o wtkU[c/>(WNh:)], and let I~N) = (lNO' IN! ,... , lrv", IN!, IN2 ,... ,1."1").
Then U;;"UN = (2N + 1) I~N), and (3.3) becomes

(A" *U;n + E~n)(UNnA" + EN") g" = (2N + 1) A" */~N) + E;nuN. (3.4)

4. CONVERGENCE THEORY; RESTRICTIONS ON THE SPACING OF THE NODES

We shall make frequent use of the row norm of a matrix as a uniform
measure of the magnitude of its elements. Given an arbitrary m X n complex
matrix B = [bu], the row norm is pCB) = maXi L~.l I b i ; I. If BI and B2 are
two m X n matrices, then P(BI + B 2) ~ P(BI) + p(B2). If BI is an m X p
matrix. and B?, is a p X n matrix, then p(BIB2) ~ p(BI ) p(B2). Vectors will
be regarded as single-column matrices, so that these norm inequalities will
be available when sums of vectors and products of matrices with vectors
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are considered. Of course, the row norm of a vector in this treatment is
simply the maximum of the absolute values of its components.

For the time being, we shall still suppose that C is an arbitrary simple
closed curve. As was implied in Section 3, we shall impose spacing conditions
on the sequence <ZIV>';~l = <{ZNO ,... , Z.v.2N})~'~1 of sets Z;, of distinct
points on C by placing requirements on the sequence of sets ~ys of image
points, where W... = {WNTc = q,-l(ZNTJ: k = 0,.,., 2N}, wIth eP defined in (3.1).
The matrix UNn introduced in Section 3, whose (k + l)th ro\v IS

0,11',\" ,... , j<~" ,WNk ,... , W:~k)' k = 0, ... , 2N, will playa key role.
A preliminary remark is in order concerning UJ~nUNn' By writing

IVN' = \i'~,l, the determinant of UNN can be identified as a Vanclermonde
determinant multiplied by a nonzero complex number (the explicit formula
is given in (21, Vol. 2, p. 1]), and so, if the points WNT:, k = 0, ... , 2N are
distinct, then USN is nonsingular. Thus, its columns are linearly independent,
and so the columns of UNn , 11 < N, are also linearly independent. It foHows
from elementary linear algebra that UJ~nUNn is always nonsingular, for any
choice of Zs in which the points are distinct.

We now identify four distribution hypotheses:

(1) There exists an absolute constant ,u such that p[(U,;S"Uvn)-lj ~
(2N -+- 1)-l/-t for all 11, N, N > 11 ~ l.

(n) lim"",",,, n1
/
2p[(2N + 1)(U;:jIlUNn)-1 - 12 >1+1] = 0, uniformly in

N > n.

(HI) The sequence of sets <{wNO ' ll'Nl ,... , \1'.v.2N}>~'~1 is strongly
equidistribmed on the unit circle, in a sense to be defined below.

(IV) limN_,co p[(2N + 1)-1 UNNU~N -- 12N+1] c= o.
To define the equidistribution property in (Ul), let w", = exp(WVi),

o ,s;; e.,,, < 27T; let v.~.((J) be the number of points W Nk in the set
{WHO' IV"1 , ... , wN !·} with arguments e,'1"O not exceeding e. The condition is
that lim\,-ooc }'N((J)/N = e/27T for each e, 0 c( 8 < 27T. It is known that a
necessary and stifficient condition for the sequence of sets to be equidistributed
in this sense is that for el'ery real-valued function fee), piecewise continuous
on [0,27/], we have limN _.co(2N -+ 1)-1 L~~of((} ....d = (271')-1 f~" f(O) de (See
[19, pp. 164-165]).

It is easy to see that (II) implies (I), but the relationships between the
other conditions are not so clear. However, let W,q. = exp[27Tik(2N -+- 1)-1],
k = O. L .. , IN, so that the WNk'S are the (2N + 1)th roots of unity_ We
have:

1, for all integers j and k;

if
if

~ 0 (mod 2N + 1),
~ 0 (mod 2N + 1).

(4<1)
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ui;"uNn = (2N + 1) 12n+1 , (U':nUNn)-1 = (2N + lrl12n+1 ,

UNNUi;N = (2N + 1) 12N+1 ,

and (II) and (IV) are satisfied trivially. Also, by the criterion in italics above,
the sequence of sets of roots of unity satisfies (III). What the conditions (I)­
(IV), are saying, then, is that the distribution of {wm . : k = 0,... , 2N}, for
each N, is not too far from an equally spaced distribution.

It might be of interest to look more closely into the geometric meaning of
conditions (II) and (IV).

5. CONVERGENCE THEORY: Row NORM INEQUALITIES

We return to the normal equations in the form (3.4) for determining
Hn(ZN ; u; z). The problem of the unisolvability and convergence of the
solution vector of the normal equations remains open when C is not an
analytic curve, even when WN = 4>-I(ZN) consists of the (2N + l)th roots
of unity for each N. The main problem is that of the nonsingularity of the
matrix of An of Section 3, which has been established only when C is analytic.

If C is an analytic simple closed curve, then there exists a number 1',°< l' < 1, such that 4> can be continued across I IV I = 1 so as to become
univalent and analytic for I w I ;;?o r. The Laurent series (2.3) for the Faber
polynomials then converge absolutely for I w I ;;?o r. The number l' (which is
not necessarily minimal) plays a key role in the ensuing analysis. In the first
place, we have the following estimates, due to Grunsky [9) and
Pommerenke [13]:

- 1/2

I0"- I K: (1) ri+h

lh "" h ' j, h = 1,2,.... (5.1)

(Actually the more naive estimate ajh = O(r~+h), l' < 1'0 < 1, derivable from
the Cauchy coefficient inequalities, is all that will be needed explicitly in the
present paper.) In the second place, and this is more important, the matrix
An of Section 3 is nonsingular for each n. This was proved by the author
in [5], with the help of a sharper form of the Grunsky-Pommerenke inequali­
ties [6,9, 10]. The basic result [5, Theorem 2.1] is

THEOREM 5.1. Let ajh, j, h = 1, 2, ... , be the Faber coefficients jar the
junction z = 4>(w), analytic and univalent jar IW I ;;?o r, °< l' < 1. Let
ao , a1 , ... , and b1 , b2 , ... be any two given i1ifinite sequences oj complex
numbers. Let an be the vector (ao , a1 , ... , an ,... , bn) and let X n be the vector
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(aD, X"l , ... , X nn ,)'n1 , .•. , Ynn)' The equation Anxn = an has a unique solution
Xn which satisfies the following inequalities, in which the right members are
independent of n:

k = 1,2" .. , n,

(5,2)

k = 1,2,... ,11,

where 1\la2 = max'(L;~l kr 2k I ak 12, L;~11o·2k IhI.. '1
2),

Henceforth in this paper, it will always be assumed that C is an analytic
curve and that r, 0 < l' < 1, is such that .p is univalent and analytic for
Ill' ! ~?: r.

We shall need estimates for the row norms of various matrices and vectors
associated with (3.4). In most cases, the proofs are obvious consequences
of (5.1) and (5.2), and will be omitted. The numbers ar , br , ex,., etc., which
appear in the following estimates are positive constants which depend on r,
but not on 11, N, nor on C, otherwise than through r. Typically they become
infinite as I" -->- 1. The notation at the right, in parentheses, gives the inequality
or equation used to derive the estimate.

(5.3) peA,,) ~ ar , (5.1)

(5.4) p(A;;-l) ~ be' (5.2)

(5.5) p[(A n *)-1] ~ Cr l1. (5.2)

(This is of course the column norm of A-;;\ and (5.4) and (5.5) are both
proved by using unit vectors a" in (5.2».

There are no restrictions on ~v in the following estimates:

(5.6) P(UNn) ~ 211 + 1 (I H',Vk i = 1),

(5.7) p(U~n) ~ 2N + 1 ([ 1l'N/' I = 1),

(5.8) p(ENn) ~ d,.r", (5".1)

(5.9) p(E:n) ~ (2N + 1) d/t n, I-C 1"'\
~..J. L)

An unpleasant looking (2n + 1) x (2n + 1) matrix

will enter the picture, and we estimate its tOW norm by the inequalities in the
first paragraph of Section 4.
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which we condense to

(5.10)

Finally, if u(z) is continuous on C, we let M = max I u(z)l, z on C. From
the definition of I~N), we have

(N)p(ln ) :s;: M, n = 1,2,... , N, N = 1,2, 3, .... (5.11)

6. CONVERGENCE THEORY: PROOF OF THEOREM 3. I

Proof We assume that C is an analytic simple closed curve, the mapping
cp of (3.1) is analytic and univalent for I w I ?o T, r < 1, u(z) is continuous
on C, and, for any set ZN on C, Hn(ZN ; u; z) (if it exists) is written in the
form (2.2) in which Pi is the jth Faber polynomial belonging to cp. To
emphasize the dependence of the coefficient vector on N, as well as on n,
we use the notation gn = g~N) = (gNO , gN1 ,... , gNn ,gNl ,..., frvn)'

We premuItiply the normal equations (2.4) by (An *U'::"Usn)-l =
(U;nUNn)-l (An *)-1, and obtain, after some rearrangement,

Ang?;") = (2N + l)(U~nUNn)-11~N) + (U~nUNnr\An*)-lE~nuN

+ (U* U )-10£ (N)Nn Nn ngn, (6.1)

where O£n is the matrix introduced in Section 5. (The inverses displayed here
exist for alln :s;: N, N = 1,2,... , by Theorem 5.1 and the remark concerning
UJnUNn in Section 4.) Another form of the equation, obtained from (6.1)
by premuItiplication by A;\ is

(6.2)

LEMMA 6.1. Let the sequence <WN ) satisfy condition (I) ofSection 4. Then

(a) there exists an no > 0 such that for all N > n ?o no, the normal
equations are unisolvable, and

(b) there exists a constant gr depending only on the function u(z) and
on r, but not on Nand n, such that p(g~N» :s;: grfo/" all n, N, N > 11 ?J; no .
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To prove (a), we use (6.2). From (5.4), condition (I), and (5.10), we have

Pn = p[A;;-1(U;nUN"r1CZ,,] ~ p(A;l) p[(U~nVNn)-11pca,,)
~ br(2N -+- 1)-1 fL(2N + 1) Olrn2rn = briLOirl1"rn < t for all n?:- no,

with no suitably chosen. The sum of the absolute values of the off-diagon2J
terms in any given row of K n = [2n+1 - A;.l(VJ:::,.UNn) -1 an is less than p." ,
and so is less than 1/2 for n ;?o 170 • However, the term in this row of K n on
the diagonal is greater than or equal to 1 - p[A;.l(U;/iU.'i,,)-l a,,], and so
is greater than 1/2 for n ?:- no . Thus, for 11 ?:- 110 , the matrix K n has a domi­
nant diagonal. Then a well-known theorem [15] assures that K" is non­
singular for all n ?:- no, and this proves part (a) of the Lemma.

For (b), we transpose the term A;;l(U.~nUN,,)-la"g~;V) in (6.2) to the right
side. We then estimate the row norm of 12"J_1g~V) by the general row DonTL

inequalities (Section 4, first paragraph), with the aid of the library of row
norm equalities in Section 5 [including (5.11)], anci the estimate in the
preceding paragraph. With the estimate for the transposed term appearing
first, for 11 ?:- no we have

and (b) follows from this inequality after subtracting p(g~N))/2 from both
sides.

It will be noted that Lemma (6.1) (a) proves part (1) of Theorem 3.1
provided that the sequence of point sets S mentioned in the theorem satisfies
condition (I). The integer ns in the theorem is the no of Lemma 6.1 (a), :md
henceforth will be so identified.

We now establish part (2) of Theorem 3.1 by proving

THEOREM 6.1. If the sequence <WN ) satisfies conditions (II)-(IV), Then

-.2rr

lim j i Hn[ZN ; u; c/>(w)] - U[C/>(W)] 12 de = 0
n-;;.;x) 0

uniformly in N > n ;> ns , ·where IV = exp(ie).

Let the formal trigonometric Fourier series for H,,[Zi'i ; u; c/>(w)] - u(¢(w)]
be denoted by L:"" Fhw", where w = exp(i8). By substituting (3.2) into (2.2),
we obtain the following representation of H" :

HneZN ; U, c/>(w) = gNO + i gNJ (Wi + I O:JhlV- h)
j=l \ h~l
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valid for I wi:?: r; for as stated in Section 3, each of the infinite series
displayed here converges for I wi;): r. With w = exp(8), rearrangement to
form the Fourier series for H .. is permissible. We introduce the Fourier
series for u[«p(w)] in complex form:

co

u[«pCw)] '" L fhW",
h~-co

It' = exp(8),

g = exp(it).

By picking out coefficients of like powers of w in H .. - u, with 1 wi = 1
(so that w= W-i), we find thatFo = gNO - fo ,F" = gN" - f" + :L;=i ai"gNi ,
h = 1,2,... , n, Fh = -f" + L;=i ajhgNi, h = n + 1, n + 2,.... Also
F_" = P", h = 1,2,.... Parseval's formula [21, Vol. 1, p.37] for H n - u
takes the form

1 J27T2,:;;- 0 I Hn[Zn ; u; ep(exp(iB))] - u[«p(exp(i8))] /2 dB

where

00

= L 1F" 1
2 = 0Nn + ENn ,

-00

(6.3)

We shall prove Theorem 6.1 by showing that limn->oo ENn = limn...oo 0Nn = 0,
uniformly in N > n ;): ns .

LEMMA 6.2. Let the sequence <WN>satisfy condition (II) ofSection 4. Then

(a) limN oo IgN.O - IN.o I = 0;
(b) limn oo L:~il gN" + L;~i aj/,gNi -IN" j2=0,uniformly in N> n ;):ns·

For the proof, we observe that gNh + L;=i aj"gNj - IN" is the (h + l)nth
component of the vector Ang~N) - tAN>, h = 1,..., n, and gN.O - IN.o is the
first component. We have
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and we shall show that the last member tends to zero, uniformly in N > n<
Using (6.1), we have

It was noted in Section 4, in the discussion of conditions (I-IV), that (ll)
implies (I); and we here assume that the constant p., in (1) is taken to accord
with this implication. Using the library of row norm inequalities in Section 5,
we quickly arrive at the estimate

p[(n + 1)1/2(Ang~N) - I~N»]

~ (1 + n-1?/2nl/2p[(2N + l)(UJrnVvn)-1 - 12n-i-l)]M

+ (n + 1)1/2[(2N + l)-Ifl-c,.n(2N + 1) d,'r n • M

+ (2N + 1)-1(2N + 1) Ct rn2r"g,.],

in which gr comes from Lemma 6.1 (b). The assumption of condition (II)
takes care of the convergence to zero of the first term on the right, and the
other term is obviously O(n5j2r n). This concludes the proof of Lemma 6.2.

The next four lemmas are concerned with the Fourier-Lagrange coefficients
of U, with particular reference to their relation with the Fourier coefficients
ofu.

LEMMA 6.3. Let the sequence <w,v) satisf)' condition (III) of Section 4.
Then

(a) for eachjixed h, h = 0,1, 2,... , limN~oc INh = fi, ;
(b) limN...,,,,(2N + 1)-1 L~~o (U[¢(WNlJl? = (2'lT)-1 f~'" (u[¢(exp(it»)])2dt.

The Lemma follows at once from the fact that u, u2, and w" are all con~

tinuous functions, so that the necessary (and sufficient) condition for an
equidistribution given in Section 4, in the discussion of (III); is available.

LEMMA 6.4. Let <WN ) satisfy conditions (III) alld (IV) of Section 4. Then

. N 1 .2".

hm L lINk 12 = -2 J (u[¢(exp(it»)))2 dt.
N--'J'r:J:) h=-,N 7T 0

(This result could be called Parseval's formula for the Fourier-Lagrange
coefficients ~rvh .)
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By definition, I~N) = (2N + 1)~1 U~NUN .
We have

= Il(I'[)*t<N) - 1 U *u I
N N 2N + 1 N N

= I(2N~ 1)2 UN*UNNUZ-NUN - (2N~ 1) UN*12N+IUNI
= 12N1+ 1 {UN*[(2N + I)-I UNNUZ-N - 12N+l]uN} I

:::::;; 2N1+ 1 P(UN*)p[(2N + lrI UNN UZ-N - 12N+l]p(uN)

:::::;; 2N~ 1 (2N + 1)Mp[(2N + l)-IUNN UZ-N - 12N+lJM,

and the last member tends to zero, by condition (IV). (The asterisks on the
vectors here indkate merely transposes, since the vectors are real.) We now
invoke Lemma 6.3 (b), and Lemma 6.4 follows at once.

LEMMA 6.5. Let <W;v) satisfy conditions (III) and (IV). Then given any
e > 0, there exists an H = H. > °such that L~=H 11m, 12 < efor all N ~ H.

By referring to the conclusions of Lemma 6.3 and Lemma 6.4, a proof
can be given which is identical, step by step, with that provided by Zygmund
[21, Vol. 2, p. IS] for the case of trigonometric interpolation in equally
spaced point sets WN •

LEMMA 6.6. Let <WN ) satisfy conditions (III) and (IV) ofSection 4. Then

This is the result to which Lemmas 6.3-6.5 are addressed. We have

N H-l H

L liNn - f" )2 :::::;; L liN" - ft, 1
2 + L (2 /IN " 1

2 + 2 IIn 1
2
).

I!~O n=O n=H

(Here we used the elementary inequality 1 ZI + Z2 12 :::::;; 2 I ZI 12 + 2 I Z2 1
2).

Given e > 0, first choose H (Lemma 6.5) ·so that 2 J:,:=H liNk )2 < e/3 for
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all N > H. Parseval's formula for the Fourier series of u implies that
lim.vl-;cc 2::;1" if" 12 = 0; so we can adjust H upward, if necessary, so that

2 I.~ If" 12 < €/3. Now hold H fixed. By Lemma 6.3 (a), there exists an
No > 0 such that N > No implies L~~:IIN" - fl" I? < E}3. These inequalities
together prove the Lemma.

We now return to (6.3). We have (n ~ lls)

n I n 1
2

Ii:' : l' I j,' I') , ,...., ~ " v -', (j ! I -<'
ON" == i gj>;O - 'NO I NO - 0 I" --;- L- L. I gNn - 'Nil -, L, ')<,lu:,Nj --, Nil - Jh i

h=1 j=1 !

n

I 4 " I I (, 12T LJ I NIl - J h l .
);=1

By Lemma 6.2, as N -'? co, the first term on the right tends to zero, and as
n ->- co, the second term tends to zero, uniformly in N > 11. By Lemma 6.3 (a),
the third term tends to zero as N ->- co. For n :::;; N, the fourth term is
dominated by 4 L;~=1 i iN" - f" 12

, and by Lemma 6.6, the latter tends to
zero as N -'? co. Thus 0Nn ->- 0 as n -'? co, uniformly in N > n.

As for '",'in, we have (with n ~ I1s)

CQ (:J:) , n I"
€Nn :::;; 4 L Ifn 1

2 + 4 I IL 5i j ;,gNJ-
h=n+l n=n-:-l j=l !

~ ~ 00

~ 4 I [f" 1
2 + 4ng/ I l: [iX;h [.

h.=n+l h=11 +-1 j=l

Here 'we have used the Cauchy inequality and the bound gr giveu by
Lemma 6.1(b). The first term on the right tends to zero as n --'1- co, by
Parseval's formula for the Fourier series of ii, The second term can be
estimated by means of (5.1), and in a routine manner a constant f3r can be
exhibited, which depends only on n, such that the double sum in this term
is bounded by f3;,r nn--1• This second term is therefore OCr'll, uniformly in
N>n.

The proof of Theorem 6.1 is now complete. We return to the proof of
Theorem 3.1. As mentioned previously, part (1) of Theorem 3.1 is contained
in Lemma 6.1. Part (2) follows from Theorem 6.1 by making the change of
variables z = c/>(w), w = exp(iO) in the integral
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and noting that with C analytic, I </>,(11')1 must be bounded on I tv I = 1. For
part (3) of Theorem 3.1, we use the Poisson integral formula for H n - u
and for lnt C. A convenient form of it is obtained by letting tv = X(z) be
any function analytic and univalent on C U lnt C which maps this closed
region onto I tv I ~ 1; then

1 j' (x(O + x(z)] I ..= 27T c [H,,(ZN ; u, ,) - uWJ Re X(O _ X(z) XW /ds I, Z E lnt C.

For z on a compact subset of lnt C, and ~ on C, min [xW - X(z)j > O. An
application of the Schwarz inequality, together with this fact and part (2)
of the theorem establish the almost uniform convergence promised in part (3).

7. ASYMPTOTIC STRUCTURE OF H,,(ZN; u; z)

The assumptions stated in the first paragraph of Section 6 are in effect
throughout the present section. Lemma 6.5 implies that if <WN ) satisfies
conditions (III) and (IV), then given any E > 0, for each sufficiently large
index h, the Fourier-Lagrange coefficient IN/! satisfies IfN /! /2 < E for all
N ~ h. With the aid of Lemma 6.2, a similar result can be obtained for the
coefficients of the least-squares harmonic interpolation polynomial.

THEOREM 7.1. Let the sequence ofnodes <WN ) satisfy conditions (II)-(lY)
of Section 4. Then for any E > 0, there exists an H = H. > °such that
L~=H / gNh [2 < Efor all N > n ~ H.

For the proof, we write

The technique of estimation applied in Section 6 to 0Nn and ENn in (6.3)
yields the inequality

n n n 2

.L I gN/< 1
2 ~ 2 L IgN/< - IN/< + .L iij/<gNj I

J.~H /<=H 1~1

00 00 N

+ 4 L L I aj/<gNi 1
2 + 4 L: lIN/< [2.

h~H j~l h~H

The proof is completed by applying Lemmas 6.l(b), 6.2(b), 6.5, and the
inequalities (5.1) to appropriate terms in the above inequality.
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In the remainder of this section we shall assume that W N consists of the
(2N + l)th roots of unity for each N, so conditions (I-IV) are satisfied
automatically. Here (U.~nUNn)-l = (2N + 1)-1. If 11 is large enough for the
normal equations to be unisolvent, we can write (6.1) i.n the form

(We have affixed a superscript to an to show dependence On N.) The question
is: If 11 ? Ils is held fixed, does the vector g;;V) (and therefore the least-squares
polynomial HnCZN ; u; z» tend to some well-defined limiting form as N -+ 'Xl ?

The answer is in the affirmative, although the formula for the limit
is not as simple as one could wish. First, we define a (LA! -I- I)-vect'Jr
an = (0, anI, Gn2 , ... , ann, bnl , bn2 ,,,., bnn), where anj = L:~'H-l ctjhfrc ,

j = 1,.", /1, and bni = L:~n+1 cxjhfh, j = 1,... , n. Here, as in Section 6, the
numbers fh are the Fourier coefficients of u[¢(exp(iti»]. Then, by using
Lemma 6.6 and the estimates (5.1), it can be shown that

As usual, let fn = (10 ,h ,.. ·,fn ,f-1 ,... ,f-n)' We know from Lemma 6.3
that limN.... ro nN

) = fn . It remains to calculate the limit of (2N + 1)-1 a~Vl =
- U,~nENr, - (An *)-1 (E,tnUNnAn + El;-nENn)' By using the properties (4.1)
of the roots of unity, together with the estimate (5.1), we find that
limN....>:; p(Ul;-nENn) = 0, limN_,ro p(ENnUI~n) = O. We now introduce the
partitioned matrix
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where OM is the zero square matrix of order M. By a proper application of
the estimates (5.1), it can be shown that limN->o:,(2N + 1)-1 E'!inENn = Tn.
It follows that

I, 1 (N) * -Ir}g.;, 2N + 1 otn = - (An) n .

We put this all together, and obtain

THEOREM 7.2. Let C be an analytic simple closed curve, let ZN =
{ep(exp[27Tk(2N + 1)-1]): k = 0,1,.." 2N}, let n be sufficiently large so that
the least-squares polynomial Hn(ZN ; u; =),for any continuous u(z) giL'en on C,
is uniquely determined, and, finally, let H n be written as a linear combination
of the Faber polynomials PI ,P2 ,... belonging to C:

n

Hn(ZN ; u; z) = gNO + L [gNiPi(Z) + gNiPi(z)].
i~1

Then, with 11 fixed, limN"''''' Hn(ZN ; u; z) eXists, and the vector g~iV) =
(gNO ,... , g,vn , gNl ,... , g,vn) has the limiting form

(7.1)

Here An is as defined in Section 3, f n is the Fourier coefficient vector of
u[ep(exp(iB))] as arranged in Section 6, and Tn and an are defined immediately
above.

What happens, when n ----+ 00 in (7.1)? It is clear from the estimates (5.1)
that both p(rn) and p(an) are 0(1'''). It can be shown that limn..."" A;/fn]i
(the limit of the jth component of A;;lfn) exists for each fixed j; the details
are given in [4, Section 4]. By using these facts and the row norm inequality
(5.5) for (An *)-J, it can be shown that, for each fixed j,

In loose terms, then, the asymptotic form of Hn(Z,v ; u; z) has the coeffi­
cient vector A;;Hoo. This was established rigorously in [4] for the direct
interpolation harmonic polynomials (the case n = N, in present notation).

As a final footnote to the general theory, we remark that all the results
of Sections 6 and 7 go through without change if u(z) is merely bounded and
piecewise continuous on C.
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8. HARMONIC POLYNOMIAL INTERPOLATION ON THE UMT CIRCLE

In this section we shall examine a case in which C is the unit circle, and
the sequence <ZN) is strongly equidistributed on C, and indeed the points
of ZN are equally spaced except for a perturbation. Let g = exp(io.:) be a
point on the unit circle which is not a root of unity, i.e., :Y.j2-rr is irrational.
The Nth set of nodes, ZN, will be JVN = {wiliO ,.,., WN,2N-2 , WN ,2N-I, ~V.v,2:"}'

where WNk = exp[2-rrikj(2N - 1)], k = 0, ..., 2N - 2, H',v.2N-l = g, H'N,2N = g.
We shall show that limn-.;oo HnU'VN ; u; z) = U(z), uniformly in N > 11 and
almost uniformly on Int C, where H." is the least-squares polynomial of
Section 2 for u and WN • We shall also show that the sequence
<HN(WN ; u; Z»:~I is unbounded for certain choices of u and certain points
z E Int C, where H N is the harmonic polynomial of degree at most N found
by interpolation to u in WN • The demonstration suggests the possibility
of a less erratic convergence behavior for the overdetermined interpolation
process than for the simple interpolation process, insofar as spacing of the
points on the curve is concerned.

Some preliminary remarks are in order. We shall write H n in the form
(2,2) with piz) = zj; thus Hn(WN ; u; z) = gNa + 22;'=1 (gNjzi + gN/i j). The
matrix PN " of Section 2 then reduces to the matrix [i,vn of Section 3. As
noted in the third paragraph of Section 4, when the points lI's/,; are distinct,
the matrix UNN is nonsingu1ar for N = 1,2,... , and so is U!;nUNn for n < lv,
The question of the existence and uniqueness of Hn(W,v ; u; z) for all n
and N, 11 ::( N, is thus answered affirmatively and requires no further atten­
tion. By calculating (U:nUNn)-1 explicitly, it is possible to show without
too much difficulty that condition (I) of Section 4 is satisfied by <H~y>,

while condition (II) is not. Also, condition (IV) is not satisfied. Condition (Ill)
is clearly satisfied. (These conditions, of course, were merely sufficient
conditions for the desired convergence behavior). The sequence <.W'II) is
not "asymptotically neutral" in the sense of Korevaar [11,16], and thererore
cannot be used successfully as a nodal sequence in the parallel problem in
the theory of complex polynomial interpolation.

We now introduce the harmonic polynomial TN_I(U; z) of degree at most
N - i which interpolates to u in the (2N - l)th roots of unity
It'NO , ... , W N ,2N-2 • Let IN" = (2N - lyl 2:~~o W~/,;U(WN/';)' h = 0, ±1, ±2,....
(The notation is inconsistent with that of Section 3 to the extent that the
present IN" would there be written IN-l,h') Let

n

TN-I,n(U; z) = {NO + L (lNhZ" +- INhZ")
n=1

and set TN - 1 = TN - 1 ,N-I •
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By using the identity
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snCZ) = 1 + Z + Z2 + ... + Zn + Z + Z2 + ... + Zn

1
2n + 1, Z = 1,

= (l - I Z 12)/(1 1 - Z 12) - 2 Re[zn+I/(l - z)],
sin(n + tW/sin 0/2, Z = ei8,

it is easy to derive the formula

__1__ 2N-2 , 1 - I ZWN/' 12

(2N - 1) L u(lt N /,;) 11 _ 12
/';=0 ZWm:

z =1= 1, (8.1)

I z I =1= 1,

(8.2)

From the second formula in the third member of (8.2), TN-l(U; exp(iO» is
the trigonometric polynomial of degree at most N - 1 which interpolates
to u(z) = u[exp(iO)] in 2N - 1 equally spaced points on [0,217]. This inter­
polation process has been studied extensively by many authors; see Zygmund
[21, Chap. 10]. The trigonometric polynomial TN-l,n(u; exp(i8» is called by
Zygmund the nth partial sum of TN-I.

When the first sum in the first formula in the third member of (8.2) is multi­
plied by 27T, it is recognizable as a Riemann sum. Also, if u(z) is bounded
on C, the second sum in this formula obviously converges to zero as n ->- 00,

uniformly in N> 1l and almost uniformly on Int C. We obtain a result
which, in the case 1l = N - 1, is due to Walsh [18]:

THEOREM 8.1. Let u be continuous on C. Then

. 1 J27T O"t 1 - I Z 1
2

hm TN- l n(Z) = -2 u(e') -'1-- _Ot 12 dt
n~.:o) 7T 0 - ze '2.

1 J27T " 1 - ,.2
= - u(e't) dt,

27T 0 I - 2,. cos(O - t) + 1'2

uniformly in N > n and almost uniform(v on Int C.
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The integral here is of course the Poisson integral for u, and thus the limit
is the solution U(z) of the Dirichlet problem for u and the unit circle.

We proceed now to exhibit an explicit representation for H,,(WN ; u; z) =
H"Cz), 11 < N. The normal equations utnUNngnN = U,~"U.N can be writter..
in the form

h=1,2,... ,I1.

By means of some fairly obvious algebraic manipulations, the quantities
H..{g), Hn(~) can be eliminated, and we obtain

HnCW".; u; z) = TN-l.n(z) + RN,.,,(z),

R, ('7\ = [neg) - TN-l.ncgJ][2(n + N) Sn(z~) - s,,(zg) snCg2
)]

N.n~, 4(n + N)2 - Sn(g2)

_L [u(~) - TN_l ,nCg)][2(n + N) s,,(zg) - Sn(2~) s"ceH
I 4(n + N)2 - snCg")

where Sn is given by (8.1).
Certain inequalities for Sn are evident from inspection of (8.1). In the

first place, S,,(g2) ::;:; 2 I 1 - g2 i-I = Ai" Then, with i 2 I < 1, I s,,{z~): ~
(l - I Z \2)(1 - I Z [)-2 + 2(1 - I 2 1)-1 = (3 + i z 11)(1 - I Z 1)-\ so that
given any compact subset D ofInt C, there exists a constant BD > 0 such that
!sn(zg)\ ::;:;BD for all ZED. Also I Sn(zg) I ::;:;BD for all ZED. Assuming u
is continuous on C, we let M = max I u(z)l, Z E C. Bya result due to Faber
(see [21, Vol. 2, p. 19]) there exists a sequence <En)~~o with En > 0, En~'" 0,
such that I TN_l",[exp(ie)]\ < En log n for all N - 1 ;? n ;? 1 and al~ e.
Thus, for (2(n + N) > Ai' , and all 2 E D, we have

and it is then clear that RN,,,(z) = O(n-llog ny, uniformly in N> 11 and
for ZED. We have proved

THEOREM 8.2. Let u be continuous on C. Then lim""",,w H n( w.", ;u; z) = U(2),
uniformly in N > n and almost uniformly on Int C.
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We now examine the situation for 11= N. The normal equations for
determining the coefficient vector g~N) simplify to UNNg'/rV) = UN' The
solution is easily obtained, and turns out to be gNj = (v; ,j = 0, 1,... , N - 2,
gN,N-l = IN.N-l - gNN , and

Substituting these coefficients into HN(W,v ; u; z), we obtain

HN(WN ; u; z) = TN-1(Z) + RN(z),

RN(z) = (ZN - ZN-l) gNN + (zN - ZN-l) gNN ,
(8.4)

with gNN given by (8.3).
For the ensuing divergence analysis, the author is indebted to a suggestion

by O'Hara, Jr., to make use of elementary functional analysis. It was pointed
out in [1] that we can write H N in the form HN(W,v; u; z) = L~~o U(WN1,)ANlb),
where A,Vk is a harmonic polynomial of degree at most N which vanishes at
all points of w'v except WNk , at which point it has the value unity. It was
further remarked that viewed in this light, for a fixed z, say Zo, HN is a
linear functional on the Banach space of continuous functions on C, with
the sup norm. The Riesz representation theorem [14, p. 40] permits us to
identify the norm of the functional as L~~o IANk(Zo)l. Then according to the
Banach-Steinhaus Theorem [14, p. 98], if SUPN{L~~o IAN!,(Zo)l} = 00, it will
follow that SUPN{! HN(WN ; u; zo)j} = 00 for all u belonging to some dense
Go-set of functions continuous on C. (This result, in a weaker form, was
obtained in [1] by using an ancestor of the Banach-Steinhaus Theorem due
to Helly. The curve C in this paragraph can be any simple closed curve,
with rv;v c C).

THEOREM 8.3. Given any point Zo on the segment (0, 1) of the real axis,

there exists a complex number ~, I ~ I = 1, ~ not a root of unity, such that

the sequence <HN(W,v ; u; zo» is unbounded for all functions u belonging to
some dense Go-set offunctions continuous on C.

The plan of the proof, in the light of the preceding paragraph, is to show
that SUPN I AN.2N- 1(ZO)! = 00. Now AN.2N- 1(ZO) is the coefficient of u(~) in
HN(WN ; u; zo). Since TN_1(Z) does not involve u(~), this coefficient must lie
in RN(z), and examination of (8.3) and (8.4) reveals it to be

AN,2N-l(ZO) = 2 Re[(e" - gN-l)(zoN - z~-1)/2i Im[(gN - gN-l)2]]

= - Re[ei (o:j2)(zoN - z~-1)/2 sin cx(sin2(N - !)cx)],

where g = exp(icx). Let Zo = 1', 0 < r < 1.
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'1 \ ,x r N

AN 0" l(ZO) = I--l)cos-) . >(r-{ 1)
1 ,",,- \1' _ sIn- L -"2 ex.

The proof will be completed by establishing the following result:

LEMMA 8.4. Given r, 0 < r < 1, and any sequence (E(jJ)~:l with E(V) > 0,
V = 1, 2, ... , and limh<xo E(V) = 0, there exists an increasing sequence ofpositive
integers <N",,> and a number ex, 0 < ex < 2", a12" irrational, such that

k = 1,2,....

The Lemma and its proof were suggested by certain results in the doctoral
thesis of O'Hara, Jr. [12, Chap. 5].

(In the inequalities (8.5)-(8.7) below, the symbol [xl denotes the largest
integer ~ x; square brackets do not have this meaning elsewhere in this
paper.:l For any positive integer iV,

Isin (N -~) ex I= Isin !(2iV - 1) ;" '1T\ - [(21V - 1) ;;.-] ~< \
~1T\(2N-1)~-l-(2N-l)~]~. (8.5)I 21T 2.. \

Let ':x = 21Tp, 0 < p < 1, where p is irrational. The number p has a unique
infinite simple continued fraction representation; say,

1
P=---~1-

hI +- 1
b2+-b~

(see [10, Chap. 10]). Define integers qn by the recursion qfj = 1, ql = 01 ,

qn = bnq.tl-l +- qn-2 , n ~ 2. Then [10, Theorem 1711

k =,1,2,.... (8.6)

If bi is odd, so is qi . If b2 , b3 , ••• are even, q2 , q3 ,... will be odd. \Ve shaH
now construct a particular p= Po as follows: Take b2k = 2, k = 1,2.... , ane:
take bi = 1, b21'+l > (r(Q2,,+1)/2 E(q2k) Q2k)-1, with b21'+l even. Then q2k is odd,
and by (8.5) and (8.6),

(8.7)
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For the conclusion of the Lemma, we take ex = 21Tf30 , and N k = (Q2lc + 0/2.
It is evident from Theorem 8.1 and the form of RN(z) in (8.4) that conver­

gence of <HN ) does take place at z = O. It is easy to extend Theorem 8.3
to cases in which Zo is placed in certain locations in Int C other than on the
positive real axis (e.g., the negative real axis, the axis of imaginaries), but
certain questions remain open. Some of them are: (1) Given allY Zo E Int C,
Zo =1= 0, is it always possible to find numbers ~, I ~ I = 1, ~ not a root of
unity, such that <HN(WN ; u; zo) is unbounded for some continuous func­
tion u? (This may be not too difficult to resolve by further study of
AN,2N-l(ZO)') Does there exist such a number gand a companion continuous
function u on C such that <HN(WN ; u; zo) diverges for every, or almost
all, points =0 on Int C? Does there exist any distribution of point-sets <W~v)
on C, not necessarily of the special type considered in this section, such that,
for some continuous u, the sequence <HN(WN ; u; zo) diverges for all, or
almost all points Zo EO lot C?
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