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1. INTRODUCTION

Let C be a simple closed curve in the complex z-plane, z = x + iy, and
let Int C denote the interior region of C. A function U from Int C io the
reals is said to be harmonic on Int C if it is continuous on Iat C, together
with its first and second partial derivatives, and satisfies the Laplace equation

(22U[ox*) -+ (8°Uey?) = 0.

The classical Dirichlet problem for C and Int C is this: Given a continuous
function ¥ from C to the reals, find a function U, harmonic on Int C, such
that at each point z, of C, lim,., U(z) = u(z,), z € Int C.

This paper is concerned with a method for approximating the solution I/
on Int C in which a finite set Z, of 2N 4 1 distinct points is chosen on C
and harmonic polynomials H,(Zy ; u; z) of respective degrees at most z,
n=1,2,.,N—1, are determined by best approximation to the boundary
values in a least-squares sense on Z, . The problem is to prove the existence
of, and characterize sequences (Zy)y_; such that the corresponding double
sequences {H, (Zy ; u; z)» converge to U on Int C.

A limiting case is that in which the least-squares approximation is perfoct
and the polynomial H,(Z, ; u; z) is determined by direct interpolation tc
at the nodes Z, . In general it is necessary to take n — N in that case. The
problem of the convergence behavior of harmonic interpolation polynomials
as the number of nodes increases was first proposed by Walsh [17]. It was
solved by him for the case in which C is an ellipse [20], and it has recently
been studied in some detail by the author [1, 3-5] for more general curves C.

There is empirical evidence that the behavior of the approximatiag
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harmonic polynomials which are tied to the boundary values at nodes Z,
on C is improved when the polynomials are “overdetermined” in the sense
that more nodes are used for a given degree » than would be required for
simple interpolation. By improvement in behavior we mean chiefly that (1)
for a given amount of computation, a closer approximation to the solution U
is obtained when the nodes are placed on C in a manner which has proved
successful for obtaining convergence in the direct interpolation case; and
(2) convergence is less sensitive to the spacing of the nodes than it is with
simple interpolation. Because of limitations of time the author has not
attempted to supplement this paper with new numerical experiments to
confirm (1).

However, support to (2) is given in Section 8 at the end of the paper,
where a striking special case is presented in which C is the unit circle and the
nodes are the roots of unity with a simple perturbation. For each continuous
u, the sequence of overdetermined polynomials converges everywhere to
the desired value on the open unit disk, but the sequence of direct interpola-
tion polynomials is unbounded at an infinite set of points on the disk for
an infinite set of continuous boundary-value functions u.

The existence of, and normal equations for calculating, the overdetermined
least-squares polynomials H,(Zy ;u; z) are discussed in Section 2. In
Section 3, the basic convergence theorem is announced (Theorem 3.1) and
the problem of finding successful sequences {Z,> on C is referred to the
unit circle by conformal mapping. The Faber polynomials are thereafter
taken to be the basis for the representation of H,(Zy ; u; z), and so play
a central role in the convergence proof. Sections 4 and 5 are concerned with
preliminaries (such as analytical requirements on the spacing of the points)
for the convergence proof, which appears in Section 6. In Section 7, the
behavior of H,(Zy ; u;z) is studied under the condition that » remains
fixed, and N — oo. Section 8 contains the special case described above.

2. EXISTENCE AND STRUCTURE OF
OVERDETERMINED HARMONIC INTERPOLATION POLYNOMIALS

Let Zy ={zy, z; ,..., Zoy} be a set of 2N -+ 1 (distinct) points on C. (It
simplifies formulas slightly to use an odd number of nodes.) The criterion
for fitting a harmonic polynomial H(u; z) to u(z) will be that

Z [H(u; z1) — u(z)P

k=0

shall be a minimum. We examine this in terms of standard linear approxima-
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tion theory. {See [7, Chap. 7].) Consider the linear space Z of functions
from C to the reals, with restriction to Z , and with real scalars. Equip this
space with an inner product (uy , u,) = Zév ty(z;) us{z,). The corresponding
norm

SZN

(2 [u(Zz)]

full =

is such that the resulting normed linear space is strictly convex [7, p. 1411
Then if ¢4(z),..., v,(2) are any m linearly independent elements of % (this
means that the m vectors v; = [u;(zy), v5(z )., vzon)], J = 1,..., m, are
linearly independent), for each ue %, there exists a unique real linear
combination Z;”:I Cv(z) which minimizes || { — u ||, where / runs through
all real linear combinations of vy , vy ,..., U,y [7, pp. 137 ff].

A harmonic polynomial of degree at most n can be defined as the real
part of a complex polynomial of degree », and so is a real linear combination
of the real-valued functions

,z+Z,..,z20 + 2%z — Z) - i{z" — %), 2.0
where the bar denotes complex conjugate. Let, 1, py(2),..., po(2) be an

arbitrary sequence of complex polynomials in which pj(z) is of degree
exactly j.j = 1,...,n. With gy, @y ,..., a4, , b; ,..., b, all real, the function

H(z) = gy + Z a,[piz) + p, ()] + Z biil pz) — pA2)]

Jj=1

+ Y [gipi2) + & pi2)], g = a;+ib;, (2.2
j=l

(7 is the imaginary unit) is also a real linear combination of the “circuiar
harmonics™ (2.1), and so is a harmonic polynomial. In fact, since z’ can be
expressed (uniquely) as a complex linear combination of pgz) =1,
P1(2),.... pi(2), (j an integer, 0 < j < #), any given harmonic polynomial of
degree n has a unique representation of the type (2.2). The functions (2.1},
restricted to Z , are linearly independent if and oaly if the functions

1, pi(2) + D1@)seees Pa(@)n + Pal2), 1(01(2) — Di(2)se-, H{PalZ) — Pal2),

restricted to Zy, are linearly independent, and a necessary and sufficient
condition for this linear independence is that the functions

19 pl(z)ﬂ"'ﬂ pn(z)7 pl(z)j"" i:‘(-z—.)-’

restricted to Zy , be linearly independent, using complex scalars.
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Now suppose that the harmonics (2.1), restricted to Z , are indeed linearly
independent. Let u € % be given. Then according to the first paragraph in
this section, there exists a unique real linear combination of the functions
(2.1), say H(u; z), which minimizes || # — u || among all linear combinations
of the functions (2.1). Also there exists a unique linear combination of the
type (2.2) of the functions I, py ..., Pu, P1see Pn, SAY HP(u; z), which
minimizes || H — u || among all such linear combinations. But H™(u; z) is,
in fact, a real linear combination of the functions (2.1), so by the uniqueness
it must be merely a rearrangement of H"(u; z), and HO(u; z) = HY(u; z)
for all z.

In [3] it is shown that for each N, N = 1, 2,..., there exists at least one
set of points Z, on the curve C such that the matrix My whose (k - 1)st
row is 1, zp ..., 24V, 25 ey 26, k=0, 1,..., 2N, is nonsingular. Thus, its
column vectors are linearly independent, and hence, if # < N, the functions
1,z,...,2"% Z,.., 2", restricted to Z, , are, too, linearly independent. Thus,
the assumption prerequisite to the existence of a unique harmonic polynomial
of degree n <C N of best approximation in the above norm || - || is not vacuous,
at least for some Z,. Henceforth (as in the Introduction) a harmonic
polynomial of degree at most n of best approximation to  in the norm || - ||
will be denoted by H.(Zy ; u; z).

Now let Z,, be such that the harmonics (2.1), restricted to Zy , are linearly
independent, so that H,(Zy ; u; z) exists and is unique. In terms of linear
approximation in the real normed linear space % , if H,, is based, as in (2.2),
on the polynomials 1, p,,..., p,, we should regard H, as the best linear
approximation to # on Z, with the elements 1, p; + Py, Py + Payeees Pn + D
i(py — Pi)sess i(Prn — Pr). The normal equations [7, p. 176] for determining
the coefficients g, , @; , b; in (2.2) are

2N

¥ 1 HA(Zy 5 45 z1) — u(zi)] = 0,

k=0
2N o
Zo [Pi(zx) + piE)HAZy 5 u; zi) — u(z)] = 0,

2N

2 ilpizi) — ;’;@)][Hn(zzv sus 7)) — w(z)] = 0,

k=0
j=12,..,n
It is convenient, for theoretical purposes, to use an equivalent complex

form for these equations, which is obtained by using the third member of
(2.2) and by obvious elementary transformations:
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2N ZIN
7 [go + z gJ.pJ(ZL “l_ Z g7p1(7k)il Z u{Zk)a

To=0 i=1 k=0
oN 2N
Pz {go + Z 8:Pze) + Z g;p; (-‘L)—! = ) oz ulzd, (23)
=6 J=1 =i h=0
J=1,2,..,n;

2N

> 0 g0 Y ainie) + 3 Eib| = L oA uE)

k=0 =0

J=12..,mn
Let Py, be the 2N + 1) x (2n -+ 1) matrix

[19 pl(zk)r--’.pn(zk): pl(zk}a'-')pﬁ(zl")_;
k==20,1,.,2N i

Let 8, == (Q0 .81 s Zn» 81 oeer Zn) ANd wy = (ulzg), u{zy),..., u{Zon)). The
normal Egs. (2.3) in matrix form become

P:’\T*nPNngn = Nnu* (24>

where the asterisk means conjugate transpose. The matrix P}, Py, is related
by elementary transformations to the Gram matrix {7, p. 177] of the clements
1,py + P1yes {(py — Pi)ye-., and so must be nonsingular under the assump-
tion that these harmonics are linearly independent on Z, . Conversely, if
the matrix P}, Py, is nonsingular, then it is easy to see by elementary linear
algebra that the columns of Py, are linearly independent, and H (2 ; u; 2)
exists uniquely, with coefficients g, given by (2.4).

3. CONVERGENCE THEORY:
FORMULATION IN TERMS OF FABER POLYNOMIALS

Given a double sequence of complex numbers <oy ,,n < N)§ .. we
shall say that lim,_. @y ., = @, uniformly in N > 5, if, given any € > 0,
there exists an n. > I such thatlay ., —a| < eforalln 2 n.andall N > n.
if ey, = ay.(z) is a value of a function with domam Z, the statement
1M, o0 dn o(2) = a(z), uvniformly in N > #r and almost uniformly on #
means that given any ¢ > 0 and any compact subset %, of #, there exisis
an 1, > 0 (which may depend on #,) such that | ay .{z} — a(z)] < < for all
n=mn,,all N> n, and all z on %, . Our basic convergence theorem is
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THuEOREM 3.1. Let C be an analytic simple closed curve, and let u(z) be
continuous on C. There exist sequences S = {Zn>T == {{Zng » Zn1 sores ZN.2NIOT
of subsets of C such that:

(1) For some positive integer ng there is a uniquely determined least-
squares polynomial H(Zy ;u; z) with coefficients given by (2.4), for each
pair N, n with N > n > ng .

(2) Limges fo| Ho(Zy s u;2) — u(2)|2 | dz | = O, uniformly in N > n.

(3) Lim,.o H(Zy;u;z) = U(z), uniformly in N >n and almost
uniformly on Int C, the interior region of C, where U(z) is the solution of the
Dirichlet problem for u and Int C.

The statement (1) is equivalent to saying that for N > n > ng , the matrix
P}, Py, is nonsingular.

To characterize successful sequences .S we shall follow a tradition in
complex polynomial interpolation theory in which the problem of proper
spacing on C is referred, by conformal mapping, to the unit circle. (See
[4, 5, 8].) Given any simple closed curve C, there exists a function

d, | dy
z= qs(w)=d(w+d0+‘—;+—f’l;+---), d>0, G3.1)

w2

which is univalent and analytic for | w | > 1, and which maps {w: |w | > 1}
conformally onto Ext C (the exterior region of C). The number 4 is the
transfinite diameter (capacity) of C. The function ¢ has a continuous exten-
sion onto I" = {w: | w| = 1} which gives a topological mapping of " onto C.
Given any set {Zng, Znq »-» Zv.ovt Of 2N -+ 1 (distinct) points on C, we
propose to characterize its distribution on C by that of the image points
Ware = ¢ zyi), k =0, 1,..., 2N on the unit circle in the w-plane.

The discussion in Section 2 shows that in the presence of uniqueness of
the least-squares solution, it makes no difference how we choose the poly-
nomials p; in the representation (2.2) insofar as the values of H(Zy ; u; z)
for a given Z, and u are concerned, provided that the polynomials p; are of
respective degrees exactly j. For computational purposes, one might well
wish to choose p;(z) = z’. But since the convergence program here involves
referral to the unit circle via the mapping (3.1), it is natural to select a set
of base polynomials p; which assume a reasonably simple form as functions
of w after this transformation. Such a property is possessed by the Faber
polynomials associated with C. (See [6], where an extensive bibliography
is given). We develop briefly those formal properties of these polynomials
which are essential for present purposes.
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Let C be an arbitrary simple closed curve. For z exterior to a sufficientiy
large circle, the inverse transformation of (3.1) has a Laurent expansion

- o
¢7Yz) = ii T+ €t Z ez .

h=1

The jth Faber polynomial pz), j = 1, 2,..., belonging to C {or to ¢) is the
principal part at infinity of the Laurent expansion of [¢—*(z)}. Clearly the
coefficient of z7 in p; is d-7 5= 0. These polynomials can be calculated from
the recursion formulas

dz) = (z/d) — d,,

Pinaz) = p2) pf2) — dhpiy — dap;o(2) — - — diypu(2) — (j+ 1) d;,
J=12...
(In using this, it is to be understood that p, = p_; = p_, = - = 0.) L is easy

to show by the calculus of residues [6] that after the transformation z = ¢{),
p; assumes the form

oo
pPON) = wl + ¥ apw ™, j=1,2,., 0w > L (3.2
k=1
Each of the series here converges almost everywhere on [w)| =1 in the

Lebesgue sense, and if C is rectifiable (as in Theorem 3.1) the series converges
absolutely for | w| = 1. (See [6, Theorems 4.3 and 4.4]). The numbers x;;
are called the Faber coefficients for C (or ¢).

Now let Zy = {Zyg ,.... Zy,on} be any set of 2N + 1 (distinct) points on
an arbitrary simple closed curve C, and let Wy = {iyg, Way 5o Waant DE
the image set on |w| =1 under the transformation ¢, determined
by (3.1).

After the substitution z == ¢(w), the matrix Py, of Section 2 becomes

o0 o< o
" ; ok L L v | WL N 4t
Lowy, + Z Fyp Wi oeees Wng 2 XoaWae s War 7 2 GV g e
n=l A=l et

o ! 5
Wy T Z RO
h=1

k=0,1,2,., 2N
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Let matrices 4, , Uy, , and Ey, be defined as follows:

-~ 0 0 - 0=
I Agp gy 7T Oy
nt1 . . .
Qpy  Oap Ann
A’ﬂ = 2
0 oy oy o o
0 ogp gy vt o
. . . . I,
|0 oy gt G -

where I, is the identity matrix of order M;
2 ved =n

U . [1, WNE > WNE 5o W'Iy:fk s Wig 90ees “)Nk]

Nn = ’

k=20,1,2,...,2N

oC

o o0 [+o]
—7 —h - R - ¥
Ev. = O: Z KypWNE 50es Z X WNE » 2 X WNE 5ees Z AW
Nn — h=n+1 h=n+1 h=n+l h=n+1

k=0,1,2,.,2N.

Then Py, = Uy,A4, + Exn. , and the normal equations (2.4) become

(An*U;n + EITTn)(UNnAn + ENn) g = An*U;:nuN "I‘ E;\‘;nuN . (33)

We now introduce a vector whose components are Fourier-Lagrange
coeflicients for u[d(w)] relative to the set Wy = {wy;., h =0,..., 2N}. (The
terminology is that of [21, Chap. 10].) For any integer A, let Iy, =
Q2N+ 221:0 Wil p(wnr)], and let LY = (Iyg s Int seees Ivm s Ivs s Tva seees I
Then U¥uy = (2N -~ 1) I$", and (3.3) becomes

(A Uiy 4+ Ef)(Uyady + Exg) 8, = QN - DAY 1 Efuy . (3.4)

4. CONVERGENCE THEORY: RESTRICTIONS ON THE SPACING OF THE NODES

We shall make frequent use of the row norm of a matrix as a uniform
measure of the magnitude of its elements. Given an arbitrary m X n complex
matrix B = [b;], the row norm is p(B) = max; 2?31 | bs; 1. If By and B, are
two m X n matrices, then p(B; + By) << p(By) + p(By). If B, is an m X p
matrix and B, is a p X # matrix, then p(BB;) < p(By) p(B;). Vectors will
be regarded as single-column matrices, so that these norm inequalities will
be available when sums of vectors and products of matrices with vectors
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are considered. Of course, the row norm of a vector in this treatment is
simply the maximum of the absolute values of its components.

For the time being, we shall still suppose that C is an arbitrary simple
closed curve. As was implied in Section 3, we shall impose spacing conditions
on the sequence {Zydwoy = {Zng s Znontsnv-: of sets Z, of distinct
points on € by placing requirements on the sequence of sets W, of image
points, where Wy = {wy, = ¢ zy): k = 0,..., 2N}, with ¢ defined in (3.1).
The matrix Uy, Iintroduced in Section 3, whose {k + 1)th row
(L, Wag serer B s Wavk ooees Warg)s & = 0,..., 2N, will play a key role.

A preliminary remark is in order concerning &J,Uy,. By writing
Wy == Wy » the determinant of Uyy can be identified as a Vandermonde
determinant multiplied by a nonzero complex number (the explicit formul
is given in [21, Vol. 2, p. 1]), and so, if the points wy,, & = 0,..., 2N are
distinct, then Uyy is nonsingular. Thus, its columns are linearly independent,
and so the columns of Uy, , n < N, are also linearly independent. It foliows
from elementary linear algebra that Uy, Uy, is a/ways nonsingular, for any
choice of Z in which the points are distinct.

We now identify four distribution hypotheses:

{I) There exists an absolute constant u such that p[(UF, Uyn)™] <
(2N 4 Dtuforalln, NNN>n>= 1.
(Y hm,,, #¥2[CON + WYWUF, Un) ™t — Iyl = 0, uniformly in
N > un
(JII) The sequence of sets <{Wyg, Wni v Wyantoma IS Strongly
equidistributed on the unit circle, in a sense to be defined below.
(V) limye p[2N 4 1) UnyUgy — Lvia] = 0.

To define the equidistribution property in (1), let w,., = exp(ify),
0 < 8y << 2m; let vy(6) be the number of points wy, in the set
{Wro s Wat oo Wapr With arguments 8y, not exceeding 8. The condition is
that limy.. vy(0)/N = 0/27 for each 0, 0 << 8 << 2. {1 is known thar a
necessary and sufficient condition for the sequence of sets to be equidistributed
in this sense is that for every real-valued function f(6), piecewise continuocus
on [0, 2x], we have limy_ 2N + 1)1 TN F(Bsi) = Qm)t [0 f() 8 (See
119, po. 164-165]).

It is easy to see that (II) implies (1), but the relationships beiween the
other conditions are not so clear. However, let wyy == exp[2mik(ZN -+ 131,
k=190.1...., 2N, so that the wy's are the (2N - 1)th roots of unity. We

wh, v, = 1, for all integers j and &;

Vi
N 2N ¢ : L A SA
X _. {0 if j=0{(mod 2N+ 1), {41
o = £ R— - N ;
PR LV = N1 if j=0(mod 2N 4+ 1)
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Then

U;\{;nUN'n = (2N ‘{" 1) 12n+1 s (Ul)\‘:-nUNn)—l = (2N + 1)—1127&4—1 H
UNNU;VEN = (2N+ 1) 12N+1 >

and (II) and (IV) are satisfied trivially. Also, by the criterion in italics above,
the sequence of sets of roots of unity satisfies (IL[). What the conditions (I)~
(IV), are saying, then, is that the distribution of {wy, : k = 0,..., 2N}, for
each N, is not too far from an equally spaced distribution.

It might be of interest to look more closely into the geometric meaning of
conditions (IT) and (IV).

5. CONVERGENCE THEORY: Row NORM INEQUALITIES

We return to the normal equations in the form (3.4) for determining
H,(Zy ;u; z). The problem of the unisolvability and convergence of the
solution vector of the normal equations remains open when C is not an
analytic curve, even when Wy = ¢~(Z) consists of the (2N 4 1)th roots
of unity for each N. The main problem is that of the nonsingularity of the
matrix of 4, of Section 3, which has been established only when C is analytic.

If C is an analytic simple closed curve, then there exists a number 7,
0 < r < 1, such that ¢ can be continued across | w| =1 so as to become
univalent and analytic for | w| = r. The Laurent series (2.3) for the Faber
polynomials then converge absolutely for | w | = r. The number r (which is
not necessarily minimal) plays a key role in the ensuing analysis. In the first
place, we have the following estimates, due to Grunsky [9] and
Pommerenke [13]:

i1/2
lant < (§) % h=12. (5.0

(Actually the more naive estimate oy, = O@{™), r < ry < 1, derivable from
the Cauchy coefficient inequalities, is all that will be needed explicitly in the
present paper.) In the second place, and this is more important, the matrix
A,, of Section 3 is nonsingular for each n. This was proved by the author
in [5], with the help of a sharper form of the Grunsky-Pommerenke inequali-
ties [6, 9, 10]. The basic result [5, Theorem 2.1] is

THEOREM 5.1. Let oy, j, h=1,2,..., be the Faber coefficients for the
Junction z = $(w), analytic and wunivalent for |w| =vr, 0 <<r <1. Let
ay >0y ..., and by, b, ,... be any two given infinite sequences of complex
numbers. Let a, be the vector (ay , ay ,-.., Qy, ..., by,) and let x,, be the vector
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(@g 5 X seees Xnm > Y1 5eees Yun)- 1he equation A,X, = a, has a unigue solution
X, which satisfies the following inequalities, in which the vight members avz
independent of n:

oo M,r .
| Xar | g?lth_)_k—l_’z_ + lax i,

M
P yarl < a“:ﬁ*)w

4| by |, E=12,..n
where M,? = max(Y5_, kr?* | a; |2, Z:=1 k¥ b D).

Henceforth in this paper, it will always be assumed that C is an analytic
curve and that r, 0 <<r < 1, is such that ¢ is univalent and analytic for
lwiZ=r.

We shall need estimates for the row norms of various matrices and vectors
associated with (3.4). In most cases, the proofs are cbvious consequences
of (5.1) and (5.2), and will be omitted. The numbers 4, , b, , o, , etc., which
appear in the following estimates are positive constants which depend on 7,
but not on n, N, nor on C, otherwise than through r. Typically they become
infinite as » — 1. The notation at the right, in parentheses, gives the inequality
or equation used to derive the estimate.

(5.3) pdy) < a,, 5.1
(5.4 p(47Y) < b, , (5.2)
(5.5) pl(4, )] < ey {(52)

(This is of course the column norm of A3, and (5.4) and (5.5) are both
proved by using unit vectors a, in (5.2)).
There are no restrictions on Wy in the following estimates:

(5.6) p(Uyn) < 21+ 1 (wyel =1,
5.7 p(UL) <N+ 1 (el = 1),
(5.8) p(Eyn) < dyrm, (5.5
(5.9 p(EED) < (2N + 1) d,r" 5.0

An unpleasant looking (2rn 4 1) X (2a + 1) matrix
Xy = — UﬁnENn - (An*)_1 EI:E'IE(UNnAn + Ey,)

will enter the picture, and we estimate its row norm by the inequalities in the
first paragraph of Section 4.
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In terms of the above constants,
() < 2N+ 1) dr™ -+ ¢n2N 4 1) d,/r((2n -+ 1) a + dr7),
which we condense to
p(0) < (2N + 1) a,i®r™. (5.10)
Finally, if u(z) is continuous on C, we let M = max | u(z)|, z on C. From

the definition of I$¥, we have

oy <M, n=12.,N, N=123,.. (5.11)

6. CONVERGENCE THEORY: PROOF OF THEOREM 3.1

Proof. We assume that C is an analytic simple closed curve, the mapping
¢ of (3.1) is analytic and univalent for | w| =7, r <1, u(z) is continuous
on C, and, for any set Z, on C, H,(Zy ; u; z) (if it exists) is written in the
form (2.2) in which p; is the jth Faber polynomial belonging to ¢. To
emphasize the dependence of the coefficient vector on N, as well as on #,
we use the notation g, = 8% = (@ng » Ex1 sves ENn > N1 sees Bnn)-

We premultiply the normal equations (2.4) by (A, *Us, Uy )"t =
(U Unn) ™ (4,7, and obtain, after some rearrangement,

4,85 = QN 4 YU Uy I 4 (U Upn) A4y

A+ (Ui Uyn) "8, (6.1)

where (7, is the matrix introduced in Section 5. (The inverses displayed here
exist for alln < N, N = 1, 2,..., by Theorem 5.1 and the remark concerning
U, Uny in Section 4.) Another form of the equation, obtained from (6.1)
by premultiplication by 4%, is

(Tynss — AT U Uyn) 200 g = 474 UE U QN + DI
+ (4. ES g (6.2)

Lemma 6.1.  Let the sequence {Wy> satisfy condition (1) of Section 4. Then

(a) there exists an ng > 0 such that for all N > n == ny, the normal
equations are unisolvable, and

(b) there exists a constant g, depending only on the function u(z) and
on r, but not on N and n, such that p(g{") < g, for alln, NN >n > n, .
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To prove (a), we use (6.2). From (5.4), condition (I), and (5.10), we have

n = LA URUn) 0] < p(ARY) plUSAU )1 p(CE
L 52N -+ Y p2N 4 D) am?r® = bppo, ™ < % forall n=mny,

with r, suitably chosen. The sum of the absolute values of the off-diagonal
terms in any given row of K, = Iypq — A7HUR, Unn) ™t G, is less than p,. ,
and so is less than 1/2 for # = n, . However, the term in this row of X, on
the diagonal is greater than or equal to 1 — p[ANUA, Uyt (7,], and so
is greater than 1/2 for n > n, . Thus, for 1 = 5y, the matrix K, has a domi-
nant diagonal. Then a well-known theorem [15] assures that K, is non-
singular for all # 2 ny , and this proves part {(a) of the Lemma.

For (b), we transpose the term AU, Uy (7,857 in (6.2) 1o the right
side. We then estimate the row norm of £,,.,85" by the general row norm
inequalities (Section 4, first paragraph), with the aid of the library of row
norm equalities in Section 5 {including (5.11)], and the estimate in Ihe
preceding paragraph. With the estimate for the transposed term appearing
fiest, for n > n, we have

@) < 3pE") + b,2N -+ Y RICN + 1) M 4 en@N + 1) d/rid},

and (b) follows from this inequality after subtracting p(g®")/2 from both
sides.

It will be noted that Lemma (6.1) (2) proves part (1) of Theorem 3.1
provided that the sequence of point sets S mentioned in the theorem sarisfies
condition (I). The integer ng in the theorem is the n; of Lemma 6.1 {2), and
henceforth will be so identified.

We now establish part (2) of Theorem 3.1 by proving

THEOREM 6.1. If the sequence {Wy) satisfies conditions (I1)-{IV), rien

1mj%unmmm¢mn—uwmnp£:0

20
uniformly in N > n > ng , where w = exp(if).
Let the formal trigonometric Fourier series for H,[Z,, ; u; p(w)] — u{d{w)]

be denoted by X", F,w", where w = exp(i). By substituting (3.2) into (2.2),
we obtain the following representation of A,

n(ZN > Uy SAUV)) = Zno l Z Exi (W] —t" Z W )

j=1 h=1

fee] ‘\

n
+2%@+ZMW)
i=1

h=1 /

640(5/2-4
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valid for | w| >=r; for as stated in Section 3, each of the infinite series
displayed here converges for | w| = r. With w = exp(if), rearrangement to
form the Fourier series for H, is permissible. We introduce the Fourier
series for u[¢(w)] in complex form:

uld(w)] ~ i fawh, w = exp(if),

fom g [ EUIBO 1 € = explin.

By picking out coefficients of like powers of w in H, — u, with [w| =1
(so that W = w), we find that Fy = gyo — fo , Fi = &wa — o + Zjes &indwy »
h=12,..,n F, = —f -+ 2;;1 XpBni, B =n+1,n-+2,.... Also
F,=F,, h=1,2,.... Parseval’s formula [21, Vol. 1, p. 37] for H, —u
takes the form

71; f zw | Ho[Z,, ; u; $(exp(i6)] — ul$(exp(id))] [* 46
= § | Fy [* = Oyn + €xn s (6.3)

where

2

B

Oxn = |l gwo — fo 212 Z &vn —Jn + Z %8 ni
h=1 j=1

2

Eanz Z

h=n+1

n
~fu + Z Xin8 N
=1

We shall prove Theorem 6.1 by showing that lim,, ., €y, = lim, o 85, = 0,
uniformly in N >n > ng.
LEMMA 6.2. Let the sequence { Wy satisfy condition (II) of Section 4. Then

(@) limy,olgyvo—Ivol=0;
(b) limy., Sl g+ 2;;1 &n8ni— v 2= O,uniformly in N >n>ns .
For the proof, we observe that gy, -+ Z?=1 &ingni — Iyn 18 the (B 4 Dnth

component of the vector 4,g!" — IM k= 1,..,n, and gy, — Iy, is the
first component. We have

gyo — Iyvo I* + 2

k=1

< @+ Dip(dogs” — L = [p(vn + D4, — V)T,

gne T 2 &gy — Ive
i=1



OVERDETERMINED HARMONIC POLYNOMIAL INTERPOLATION 163

and we shall show that the last member tends to zero, uniformly in N > ».
Using {6.1), we have

(n + DAY — 1Y)
= {1 + Y PR PN 4 U Uy ™ — Lonsal ‘{ELN)
JT (]’l + 1)1/2[(UﬁnUan)—l(An*)le;n“N ’1— (U;HUI\"”>—IEZYZg'I(EIV)]‘
It was noted in Section 4, in the discussion of conditions {I-1V), that (H)_
implies {I); and we here assume that the constant u in (I) is taken to accord

with this implication. Using the library of row norm inequalities in Section 53,
we quickly arrive at the estimate

plin 4 M *(A,gl” — )]
< (1 4 220 2p[2N + D(UgnUnn) ™ — Lone)IM
+ -+ DYRN 4 D Yue,n(QN + Dy d/'rm - M
+ (2N 4 D Y2N + 1) a,m2r7g,],

in which g, comes from Lemma 6.1 (b). The assumption of condition (II)
takes care of the convergence to zero of the first term on the right, and the
other term is obviously O(n%/2r™). This concludes the proof of Lemma 5.2.

The next four lemmas are concerned with the Fourier-Lagrange coefficients
of u, with particular reference to their relation with the Fourier coefficients
of u.

Lempaa 6.3, Let the sequence {Wy> satisfy condition (II1) of Seciion 4.
Then

{2} for each fixed h, h =21(3, 1, 2,..., Imyoe Ing :f},zg
(0) Nimpo@N + 17 300 wld(wa)]? = (2m) [o (llexp(irp])® dt.

The Lemma follows at once from the fact that », %, and w" are ali con-
tinuous functions, so that the necessary (and sufficient) condition for an
equidistribution given in Section 4, in the discussion of (1II), is available.

LemmMa 6.4, Let <Wy> satisfy conditions (111) and (IV) of Section 4. Then

N

fm Y el =5 | IAeRpO)) .

h=—N

(This result could be called Parseval’s formula for the Fourier-Lagrangs
coefficients /y;, .)
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By definition, I’ = QN -+ 1) Ukuy .
We have

" +1 2 Wl$0)) |
l(N)*l(N) I u *u l
AN+ VW

1 y 1
= | ST “N*UNNU;N“N ~ AN 1N uN*I2N+1uN
PIE) AN F D)

1 =
= N1 fuy [N + D7 Uy Uy — Loyialuy} l

1 Ay
< oy 1 P PN + 1) YWanUsiy — Lysalp(iy)

1 _
< m (2N + I)MP[(ZN -+ 1) 1UNNU1>\i;N — IZN+1]M:

and the last member tends to zero, by condition (IV). (The asterisks on the
vectors here indicate merely transposes, since the vectors are real.) We now
invoke Lemma 6.3 (b), and Lemma 6.4 follows at once.

LemMmA 6.5. Let Wy satisfy conditions (III) and (IV). Then given any
€ > 0, there exists an H = H_ > 0 such that Zh_H [ I, B < eforall N > H.

By referring to the conclusions of Lemma 6.3 and Lemma 6.4, a proof
can be given which is identical, step by step, with that provided by Zygmund
[21, Vol. 2, p. 15] for the case of trigonometric interpolation in equally
spaced point sets Wy .

LeMMA 6.6. Let {Wy> satisfy conditions (II1) and (IV) of Section 4. Then
N
lim Y [ o —fil? = 0.
h=0
This is the result to which Lemmas 6.3-6.5 are addressed. We have
H—l

lem—fn ZMw»*fnlﬂ-}:(ZlezLJ°+2Iﬁl’)

(Here we used the elementary inequality |z + 2, 2 <2z 24+ 2 25 .
Given € > 0, first choose H (Lemma 6.5) so that ZZ,Z:;H[ Ivz 2 < ¢/3 for
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all N > H. Parseval’'s formula for the Fourier series of u implies that
iimw% ,_f:,i 7 [2=0; so we can adjust H upward, if necessary, so that
22H /¥ < €/3. Now hold H ﬁx:d By Lemma 6.3 (a), there exists &n
N, > 0 such that N > N, implies Zh ;lwh — £ 12 < ¢/3. These inequalities
together prove the Lemma,

We now return to (6.3). We have (n = #5)

n i
i o i ) — N F.F,. — £
Onn == | Eve — fyo T+ Ivo — Z {8 Ewn by T 2, XinNi T Lyn — Fa :
h=1 j=1 !

H

a
Enn — 1Nh T Z &ng v (F+2
j=1

<Zigwo— Iy l® ‘*‘42

h=1

42 byn — Jo 12

\‘m

wo — Jo ¥

By Lemma 6.2, as N — o0, the first term on the right tends to zero, and as
n — o, the second term tends to zero, uniformly in N > »n. By Lemma 6.3 (2},
the third term tends to zero as N — co. For n << N, the fourth term is
dominated by 422’;1 [ iva — f3 12, and by Lemma 6.6, the latter tends to
zero as N — oo, Thus 8y, — 0 as n — o0, uniformly in §¥ > 4.

As for €y, , we have (with # > ny)

€xn \4 2 {fh {h+4 y ly :xﬂco\J (k}

h=p+1 R=n+l
«© Db oo
12 s O =
<4 Y Ifaltddng? 33 1&g
h=n+l h=n+1 j=1

Here we have used the Cauchy inequality and the bound g, giver by
Lemma 6.1(b). The first term on the right tends to zero as x— w, by
Parseval’s formula for the Fourier series of u. The second term can be
estimated by means of (5.1), and in a routine manner a constant 8, can be
exhibited, which depends oniy on #, such that the double sum in this term
is bounded by B,7"s1 1. This second term is therefore O}, uniformly in
N > n.

The proof of Theorem 6.1 is now complete. We return to the proof of
Theorem 3.1. As mentioned previously, part (1) of Theorem 3.1 is contained
in Lemma 6.1. Part (2) follows from Theorem 6.1 by making the change of
variables z = ¢(w), w = exp(if) in the integral

| VHW(Zy 305 2) — u(@)? | dz |
c
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and noting that with C analytic, | ¢'(w)| must be bounded on | w | = 1. For
part (3) of Theorem 3.1, we use the Poisson integral formula for H, — u
and for Int C. A convenient form of it is obtained by letting w = x(z) be
any function analytic and univalent on C U Int C which maps this closed
region onto | w | < 1; then

H(Zy ;u;2) — U(z)

17 XD + x(2)7 o
= H(Zyu, ) — u Re |Z2— L )| dl|, zelntC.
5 | T2y 00— w(@IRe [ X5 v 1 dt

For z on a compact subset of Int C, and { on C, min | y({) — x(z)] > 0. An
application of the Schwarz inequality, together with this fact and part (2)
of the theorem establish the almost uniform convergence promised in part (3).

7. ASYMPTOTIC STRUCTURE OF H,(Zy ; u; z)

The assumptions stated in the first paragraph of Section 6 are in effect
throughout the present section. Lemma 6.5 implies that if <Wy) satisfies
conditions (IIT) and (IV), then given any € > 0, for each sufficiently large
index A, the Fourier-Lagrange coefficient ly, satisfies |y, |2 << e for all
N = h. With the aid of Lemma 6.2, a similar result can be obtained for the
coefficients of the least-squares harmonic interpolation polynomial.

THEOREM 7.1. Let the sequence of nodes {Wy> satisfy conditions (II)~(IV)
of Section 4. Then for any € > 0, there exists an H = H_> 0 such that
Zh——ngNh [2<<eforall N >n>= H.

For the proof, we write

Enn = (gzvn — Lyn + z &jlb-g_Nj> + (an - Z &jtha')'
j=1

=1

The technique of estimation applied in Section 6 to 8y, and ey, in (6.3)
yields the inequality

Z lgNh 2 Z
j=H h=H

n 2
gxn — Iy -+ Z &g Ni ]
j=1

4+ 4 Z Zl“mgmfz“f—4 Z f o 12
h=H j=1

The proof is completed by applying Lemmas 6.1(b), 6.2(b), 6.5, and the
inequalities (5.1) to appropriate terms in the above inequality.
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In the remainder of this section we shall assume that Wy consists of the
(2N -+ Dth roots of umity for each N, so conditions (I-IV) are satisfied
automatically. Here (U}, Uyn)t = (2N + )% If » is large enough for the
normal equations to be unisolvent, we can write (6.1} in the form

69 = (Ao — gy A0V K — g (S |

(We have affixed a superscript to (7, to show dependence on NN.) The question
is: If # > n is held fixed, does the vector g¢" {(and therefore the least-squares
polynomial H,(Zy ; u; z)) tend to some well-defined limiting form as N — o0 ?
The answer is in the affirmative, although the formula for the limit
is not as simple as one could wish. First, we define a (2 ~+ I)-vector
a, = (03 An1 s Gpa 5ee0s Apn s bnl s b‘nZ seres bnn)s where Gp; = 2;;:97,-}—1 O‘J'hf?» H
J=li,n, and by = Y pi1 & fns j = L,..., n. Here, as in Section 6, the
numbers f;, are the Fourier coefficients of u[é(exp(if))]. Then, by usiag
emma 6.6 and the estimates (5.1), it can be shown that

. 1
1{1_1)’(’:10 —2—‘]\[—_‘_—‘1— ENnu% = @, -

As usual, let £, = (f5,fi s Sn s So1 seees fon). We know from Lemma 6.3
that limy_,, £ = £, . It remains to calculate the limit of (2N -+ 1)1 (7¢Y =
— U B — (A (EXUnnd, + EX Eny). By using the properties (4.1)
of the roots of unity, together with the estimate (5.1}, we find that
limyoe p(UREyn) =0, limy o p(ExnUS,) = 0. We now introduce the
partitioned matrix

0] 0 0 - 0 g - 6 T
0
0,41 h;Zn:H e
Lj=1,.,n
r,=|°
0
&i Ajp
Lj=1l,.,n
.0 .
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where O, is the zero square matrix of order M. By a proper application of
the estimates (5.1), it can be shown that limy (2N - 1)1 E}f Ey, = T, .
It follows that

lim (Z(N) (An*)—lrn ]

N-owo 7N+ 1

We put this ali together, and obtain

THEOREM 7.2. Let C be an analytic simple closed curve, let Zy =
{p(exp[2nk(2N + D)D: k=0, 1,..., 2N}, let n be sufficiently large so that
the least-squares polynomial H,(Zy ; u; z), for any continuous u(z) given on C,
is uniquely determined, and, finally, let H, be written as a linear combination
of the Faber polynomials p; , p, ,... belonging to C:

Hy(Zy;u;2) = gyno + Z [gnipi(2) + gNii;'(_Zj-]'

Jj=1

Then, with n fixed, limy.,., HZy ;u;z) exists, and the vector gV’ =
(8N soes Exn » En1 50o-» Enn) Has the limiting form

g = (4, — (4T ™ (fr — (4.7 "a). (1.1)

Here 4,, is as defined in Section 3, f, is the Fourier coefficient vector of
u[p(exp(i®))] as arranged in Section 6, and I, and a,, are defined immediately
above.

What happens, when # -~ oo in (7.1) 7 It is clear from the estimates (5.1)
that both p(I%,) and p(a,) are O(r"). It can be shown that lim,_. 4,,];
(the limit of the jth component of A;'f,) exists for each fixed j; the details
are given in [4, Section 4]. By using these facts and the row norm inequality
(5.5) for (4,*)7%, it can be shown that, for each fixed j,

. . 1
hmn—»mgm' = hmnawAn fn]) .

In loose terms, then, the asymptotic form of H,(Zy ; u; z) has the coeffi-
cient vector A7, . This was established rigorously in [4] for the direct
interpolation harmonic polynomials (the case » = N, in present notation).

As a final footnote to the general theory, we remark that all the results
of Sections 6 and 7 go through without change if u(z) is merely bounded and
piecewise continuous on C.
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8. HARMONIC POLYNOMIAL INTERPOLATION ON THE Uwit CIRCLE

In this section we shall examine a case in which C is the unit circle, and
the sequence {Z,) is strongly equidistributed on C, and indeed the poinis
of Zy are equally spaced except for a perturbation. Let § = exp(in} be 2
point on the unit circle which is not a root of unity, i.e., /2 is irrational.
The Nth set of nodes, Zy , will be Wy = {Wxg 4oy Wiy aw_s s W on—1 s Wy, ,{:
where Wy, = exp[2mik/2N — D], k = 0,0, 2N — 2, Wy onv_g = &, Wy on =
We shall show that lim,.., H,(Wy ; 4; z) = U(z), uniformly in I’v > n an‘.;
almost uniformly on Int C, where H, is the least-squares polynomial of
Seciion 2 for u and W,. We shall aiso show that the sequence
(H(Wy ; u; 2))%_, is unbounded for certain cheices of u and certain points
zelnt C, where Hy is the harmonic polynomial of degree at most N found
by interpolation to u in W, . The demonstration suggesis the possibility
of a less erratic convergence behavior for the overdetermined interpolation
process than for the simple interpolation process, insofar as spacing of the
points on the curve is concerned.

Some preliminary remarks are in order. We shall write H, in the form
(2.2) with py(z) = =7; thus Hu(Wy ;45 2) = gxe + Xy (gws2' + EwsE). The
matrix Py, of Section 2 then reduces to the matrix Uy, of Section 3. As
noted in the third paragraph of Section 4, when the points wy; are distinct,
the matrix Uyy is nonsingular for N = 1, 2,..., and so is U¥, Uy, for n < ¥,
The question of the existence and uniqueness of H Wy ;u;z) for all n
and N, n <{ N, is thus answered affirmatively and requires no further atten-
tion. By calculating (U, Unn)™ explicitly, it is possible to show without
too much difficulty that condition (1) of Section 4 is satisfied by (W,
while condition (II) is not. Also, condition (IV) is not satisfied. Condition {¥IT}
is clearly satisfied. (These conditions, of course, were merely sufficient
conditions for the desired convergence behavior). The sequence (W) is
not “asymptotically neutral” in the sense of Korevaar {11, 16], and thereiore
cannot be used successfully as a nodal sequence in the parallel problem in
the theory of complex polynomial interpolation.

We now introduce the harmonic polynomial Ty_,(u; z) of degree at raost
N — 1 which interpolates to u in the (2N — 1 ;th roots of uﬁi'iy
Wig res Wiy ow_a . Let £y = QN — 1)1 Zk —o Wantt(wys), =0, £1, 4
(The notation is inconsistent with that of Section 3 to the exient that thf:
present Iy, would there be written /y_; .} Let

Tyo,n(U; 2) = Ing + Z (Iynz" -+ [M- )

k=1

and set Ty_; = Ty 1 no1-
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By using the identity

@) =14z+224 42"+ Z 422 f - 2"
2n + 1, z=1,
=10 —=1zP)/(1—z)—2Re[z7/(1 —2)], z+#1, (8.1)
sin(n + 3)f/sin 0/2, z = &%,

it 1s easy to derive the formula
1 ON—2

TN—l,n(u; Z) 2N 1 Z U(H Nk) Sﬂ("“’Nk)
k=

1 w2 — | z2Wyy |2
eN =1 ,?;0 uOrwe) T = (1= zwy 1P
2 2N—2 w
_) —RegpT ¥ w0 N,L)(“Ng‘, . Lzl A
1 N2 sin(z -+ 1)(0 — Oyp)
2N — 1 kgo W) —r ey
z = e%, Onis = Arg wyy, . (8.2)

From the second formula in the third member of (8.2), Ty_;(u; exp(if)) is
the trigonometric polynomial of degree at most N — 1 which interpolates
to u(z) = ulexp(i)] in 2N — 1 equally spaced points on [0, 2]. This inter-
polation process has been studied extensively by many authors; see Zygmund
[21, Chap. 10). The trigonometric polynomial Ty_, ,(u; exp(id)) is called by
Zygmund the #th partial sum of Ty_, .

When the first sum in the first formula in the third member of (8.2) is multi-
plied by 2, it is recognizable as a Riemann sum. Also, if u(z) is bounded
on C, the second sum in this formula obviously converges to zero as #n — o0,
uniformly in N > n and almost uniformly on Int C. We obtain a result
which, in the case # = N — 1, is due to Walsh [18]:

THEOREM 8.1. Let u be continuous on C. Then

hm TN-—I "(Z) — 2 f u(e”) l 1 [ez_ﬁ}t ]2 dt

1 — 2

27 )
- 777-— J;, u(e”) — 2rcos(@ — ¢t) + r? b

— i0
z = re*,

uniformly in N > n and almost uniformly on Int C.
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The integral here is of course the Poisson integral for u, and thus the limit
is the solution U(z) of the Dirichlet problem for u and the unit circle.

We proceed now to exhibit an explicit representation for H(Wy ; u; z) =
H,(2), n < N. The normal equations Ug,Uy.g," = U Xy can be written
in the form

CHO+HE  w@®+u®

ST TONTT T T2N-—1 e
L EHO 4+ EHE | ) T+ Eu)
Enm 2N — 1 IN = 1 X 2
I EHL(E) + EHE) _ ) + Eud) 7
8nn 2_ZV'—‘ 1 - 2]\]_ 1 I ENR >

h=1,2,.,n

By means of some fairly obvious algebraic manipulations, the guantities
H.(&), H, (&) can be eliminated, and we obtain

Hr(Wf\*a ll; Z) == TN—-l,'n(Z) "'i_ RN,'n(Z)a

[ﬁ(g) - TN—l,n(g)][z(n + N) SW(ZE) — sn(zf) Sn(§2)E
4n + NY — s.(£%)

L ) — Ty 1120 + N) 5,(28) — 5,(z) 5,8 )?
4(n 4 N)* — 5,(£%)

RN,@’:(Z} =

where s, is given by (8.1).

Certain inequalities for s, are evident from inspection of (8.1). In the
first place, s (€3 < 2|1 — & |1=4,. Then, with {z| <1, |58 <
A—=1zB)Q—1z2D)?+20 =1z =0+ 1z — 1207 so that
given any compact subset D of Int C, there exists a constant By > 0 such that
| 5.(2z8)| < B, for all ze D. Also | 5,(z€)| < Bp, for all ze D. Assuming u
is continuous on C, we let M = max | w(z)!, z € C. By a result due to Faber
(see {21, Vol. 2, p. 19]) there exists a sequence {e, 5o With €, >0, ¢, — G,
such that | Ty_; .[exp(i)]] < e,logn for all N —1>#n>=1 and al 6.
Thus, for 2(n + N) > A4, , and all z € D, we have

| Ry.nf(2)] <{2M + e, log m){2(n + N) Bp — BpA/[4(n + N)* — 47}

and it is then clear that Ry, ,(2) = O(m~'log n), uniformly in N > » and
for z € D. We have proved

THEOREM 8.2. Let u be continucus on C. Thenlim,,_, H,(Wy s u; 2} = Uz},
uniformly in N > n and almost uniformly on Int C.
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We now examine the situation for n = N. The normal equations for
determining the coefficient vector g&¥’ simplify to Uyygl® = uy. The
solution is easily obtained, and turns out to be gy; = Iy; , j = 0, 1,..., N — 2,

&v.n-1 = ly,y-1 — &wn » and

_ [u(® = Ty (OKE — 8 — @ — T @I - 879
oo 21 Im[(€" — E¥-1p] -6

Substituting these coefficients into Hy(Wy ; u; z), we obtain

Hy(Wy ; u; 2) = Ty4(2) + Ry(2), (8.4)

Ry(z) = (¥ — 28 gy + (¥ — 2V 8yw »

with gy given by (8.3).

For the ensuing divergence analysis, the author is indebted to a suggestion
by O’Hara, Jr., to make use of elementary functional analysis. It was pointed
out in [1] that we can write H in the form Hy(Wy; u; z) = Ziﬁo u(Wyp)Ayi(2),
where Ayy is 8 harmonic polynomial of degree at most N which vanishes at
all points of Wy except wy; , at which point it has the value unity. It was
further remarked that viewed in this light, for a fixed z, say z,, Hy is a
linear functional on the Banach space of continuous functions on C, with
the sup norm. The Riesz representation theorem [14, p. 40] permits us to
identify the norm of the functional as Zi‘zo | Avu(Zo)l- Then according to the
Banach-Steinhaus Theorem [14, p. 98], if supN{Ziﬁl’O | Avi(zo)} = oo, it will
follow that supy{| Hy(Wy ; u; z,)|} = o for all u belonging to some dense
Gs-set of functions continuous on C. (This result, in a weaker form, was
obtained in (1] by using an ancestor of the Banach-Steinhaus Theorem due
to Helly. The curve C in this paragraph can be any simple closed curve,
with Wy C C).

THEOREM 8.3. Given any point z, on the segment (0, 1) of the real axis,
there exists a complex number &, | €| = 1, £ not a root of unity, such that
the sequence {H(Wy ; u; zo))> is unbounded for all functions u belonging to
some dense Gs-set of functions continuous on C.

The plan of the proof, in the light of the preceding paragraph, is to show
that supy | Aw.av—1(zp)] = 00. Now Ay .ny_i(z,) is the coefficient of u(§) in
Hy(Wy ; u; zg). Since Ty_q(z) does not involve u(€), this coefficient must lie
in Ry(z), and examination of (8.3) and (8.4) reveals it to be

Mp.aw-a(20) = 2 Rel(E¥ — EV-1)(z," — Zy-1/2i Im[(€¥ — V1))

— —Re[e®/d(z,Y — Z¥-1)/2 sin a(sin®(N — })a)],

where £ = exp(ia). Let z, =r, 0 <r < 1.
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Then

N

/1 \ X e
Mviavaalzo) = (7 1) €08 3 e

The proof will be completed by establishing the following resuit:

Levma 8.4. Givenr, 0 <r <1, and any sequence {<(v)y7, with (v} > 1,
v =1, 2,..., and lim, .. e(v) = 0, there exists an increasing seguence of positive
integers \NL, and a number «, 0 < o << 2w, of2% irrational, such that

LN Sin(Ny — (1/2)o | < we@Ny, — 1), k=1,2

The Lemma and its proof were suggested by certain results in the doctoral
thesis of G'Hara, Jr. [12, Chap. 5].
(In the inequalities (8.5)—(8.7) below, the symbol {x] denotes the largest

integer < x; square brackets do not have this meaning eisewhere in this
paper.} For any positive integer N,

!sm (v —-—)(xi — lsin g(zzva g wg — low - 1,_J- '

7N = D)5 — [N — D3] 5.3

Let o = 278, 0 < B < 1, where B is irrational. The number 8 has a unique
infinite simple continued fraction representation; say,

1
B= ]
b1+——~—-~—
by
!I_

(see [10, Chap. 10]). Define integers g, by the recursion g, = 1, g. = &,
9n = buGu -+ gus»n = 2. Then {10, Theorem 171}

1
q2kﬁ - [QZMS] < E"——_—" » k= 1: 2: . (35)
2r+192%

Ifb,isodd,sois g, . If by, b, ... are even, ¢, , G ,... Will be odd. We shall
now construct a particular 8 = B, as follows: Take by, = 2, k =1, 2...., anc
take by = 1, bypyq > (r®=t 0 e(q,,) ¢or) ™Y, With by, pq even. Then g, is odd,
and by (8.5) and (8.6),

r—(QQk+1) 2 ¢in (%k ) ) ' < ;—(‘Izkﬂ)/) W(q-zlcﬁ . f_q-zk,BD
F (02, +1) /2

- 5 e(gor) Gor ]
<r otV /2 (go1) Gon = me{qas).
Gor:

o~
@]
~3
N
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For the conclusion of the Lemma, we take « = 278, , and Ny, = (go;, - 1)/2.

It is evident from Theorem 8.1 and the form of Ry(z) in (8.4) that conver-
gence of (Hy) does take place at z = 0, It is easy to extend Theorem 8.3
to cases in which z, is placed in certain locations in Int C other than on the
positive real axis (e.g., the negative real axis, the axis of imaginaries), but
certain questions remain open. Some of them are: (1) Given any z, € Int C,
zy 5= 0, is it always possible to find numbers &, | €| = 1, £ not a root of
unity, such that {Hy(Wy ; u; z,)> is unbounded for some continuous func-
tion u? (This may be not too difficult to resolve by further study of
Ay.2n—1(20).) Does there exist such a number £ and a companion continuous

A

function # on C such that {Hy(Wy ; u; z,)) diverges for every, or almost
all, points z, on Int C ? Does there exist any distribution of point-sets Wy
on C, not necessarily of the special type considered in this section, such that,
for some continuous u, the sequence {H Wy ; u; z,)> diverges for all, or
almost all points z; € Int C?
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